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Abstract. We prove that the exact versions of the domatic number problem are
complete for the levels of the boolean hierarchy over NP. The domatic number prob-
lem, which arises in the area of computer networks, is the problem of partitioning
a given graph into a maximum number of disjoint dominating sets. This number is
called the domatic number of the graph. We prove that the problem of determining
whether or not the domatic number of a given graph is exactly one of k given values
is complete for BH2k(NP), the 2kth level of the boolean hierarchy over NP. In partic-
ular, for k = 1, it is DP-complete to determine whether or not the domatic number
of a given graph equals exactly a given integer. Note that DP = BH2(NP). We
obtain similar results for the exact versions of generalized dominating set problems
and of the conveyor flow shop problem. Our reductions apply Wagner’s conditions
sufficient to prove hardness for the levels of the boolean hierarchy over NP.

1. Introduction and Motivation

1.1. Two Scenarios Motivating the Domatic Number Problem

A dominating set in an undirected graph G is a subset D of the vertex set V (G) such
that every vertex of V (G) either belongs to D or is adjacent to some vertex in D.
The domatic number problem is the problem of partitioning the vertex set V (G) into a
maximum number of disjoint dominating sets. This number, denoted by δ(G), is called
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the domatic number of G. The domatic number problem arises in various areas and
scenarios. In particular, this problem is related to the task of distributing resources in a
computer network, and also to the task of locating facilities in a communication network.

Scenario 1: Suppose, for example, that resources are to be allocated in a computer
network such that expensive services are quickly accessible in the immediate
neighborhood of each vertex. If every vertex has only a limited capacity, then
there is a bound on the number of resources that can be supported. In particular,
if every vertex can serve a single resource only, then the maximum number
of resources that can be supported equals the domatic number of the network
graph.

Scenario 2: In the communication network scenario, n cities are linked via commu-
nication channels. A transmitting group is a subset of those cities that are able
to transmit messages to every city in the network. Such a transmitting group
is nothing other than a dominating set in the network graph, and the domatic
number of this graph is the maximum number of disjoint transmitting groups in
the network.

1.2. Some Background and Motivation from Complexity Theory

Motivated by the scenarios given above, the domatic number problem has been thor-
oughly investigated. Its decision version, denoted by DNP, asks whether or not δ(G) ≥ k,
for a given graph G and a positive integer k. This problem is known to be NP-complete
(see [GJ]), and it remains NP-complete even if the given graph belongs to certain special
classes of perfect graphs including chordal and bipartite graphs; see the references in
Section 2. Feige et al. [FHK] established nearly optimal approximation algorithms for
the domatic number.

Expensive resources should not be wasted. Given a graph G and a positive inte-
ger i , how hard is it to determine whether or not δ(G) equals i exactly? Of course, a
binary search using logarithmically many questions to DNP would do the job and would
prove this problem to be contained in PNP

‖ , the class of problems solvable in determin-
istic polynomial time via parallel (a.k.a. “nonadaptive” or “truth-table”) access to NP.
Can this obvious upper bound be improved? Can we find a better upper bound and a
matching lower bound so that this problem is classified according to its computational
complexity?

In this paper we provide a variety of such completeness results that pinpoint the
precise complexity of exact generalized dominating set problems, including the just-
mentioned exact domatic number problem. Motivated by such exact versions of NP-
complete optimization problems, Papadimitriou and Yannakakis introduced in their sem-
inal paper [PY] the class DP, which consists of the differences of any two NP sets. They
also studied various other important classes of problems that belong to DP, including
facet problems, unique solution problems, and critical problems, and they proved many
of them complete for DP.

As an example of a DP-complete critical graph problem, we mention one specific
colorability problem on graphs. A graph G is said to be k-colorable if its vertices can be
colored with no more than k colors such that no two adjacent vertices receive the same
color. The chromatic number of G, denoted by χ(G), is defined to be the smallest k
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such that G is k-colorable. In particular, the 3-colorability problem, one of the standard
NP-complete problems (see [GJ]), is defined by

3-Colorability = {G | G is a graph with χ(G) ≤ 3}.
Cai and Meyer [CM] showed DP-completeness for Minimal-3-Uncolorability, a
critical graph problem that asks whether a given graph is not 3-colorable, but deleting
any of its vertices makes it 3-colorable.

As an example of a DP-complete exact graph problem, we mention one further
specific colorability problem on graphs. Wagner [Wa1] showed that for any fixed integer
i ≥ 7, it is DP-complete to determine whether or not χ(G) equals i exactly, for a given
graph G. Recently, Rothe optimally strengthened Wagner’s result by showing that it is
DP-complete to determine whether or not χ(G) = 4, yet the problem of determining
whether or not χ(G) = 3 is in NP and thus very unlikely to be DP-complete [Ro].

More generally, given a graph G and a set Mk = {i1, i2, . . . , ik} of k positive integers,
how hard is it to determine whether or not δ(G) equals some i j exactly? Generalizing DP,
Cai et al. [CGH+1], [CGH+2] introduced and studied BH(NP) = ⋃

k≥1 BHk(NP), the
boolean hierarchy over NP; see Definition 3 in Section 2. Note that DP is the second
level of this hierarchy. Wagner [Wa1] identified a set of conditions sufficient to prove
BHk(NP)-hardness for each k, and he applied his sufficient conditions to prove a host
of exact versions of NP-complete optimization problems complete for the levels of the
boolean hierarchy. In particular, Wagner [Wa1] proved that the problem of determining
whether or not the chromatic number of a given graph is exactly one of k given values is
complete for BH2k(NP). Also this more general result of Wagner was improved optimally
in [Ro]: BH2k(NP)-completeness of these exact chromatic number problems is achieved
for given k-element sets whose elements indicate the smallest number of colors possible.

Wagner’s technique was also useful in proving certain natural problems complete
for PNP

‖ . For example, the winner problem for Carroll elections [HHR1], [HHR2] and
for Young elections [RSV] as well as the problem of determining when certain graph
heuristics work well [HR2], [HRS] are each complete for PNP

‖ .

1.3. Outline and Context of Our Results

This paper is organized as follows. Section 2 introduces the graph-theoretical notation
used and provides the necessary background from complexity theory. In addition, we
present some results and proof techniques to be applied later.

Section 3 introduces a uniform approach proposed by Heggernes and Telle [HT]
that defines graph problems by partitioning the vertex set of a graph into generalized
dominating sets. These generalized dominating set problems are parameterized by two
sets of nonnegative integers, σ and ρ, restricting the number of neighbors for each
vertex in the partition. Using this uniform approach, a great variety of standard graph
problems, including various domatic number and graph colorability problems, can be
characterized by such (k, σ, ρ)-partitions for a given parameter k; Table I in [HT] provides
an extensive list containing 13 well-known graph problems in standard terminology and
their characterization by (k, σ, ρ)-partitions. We adopt Heggernes and Telle’s approach
and expand it by defining the exact versions of their generalized dominating set problems.
We also show in this section some easy properties of the problems defined.
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In Section 4 we study these exact generalized dominating set problems in more
depth. The main results of this paper are presented in Sections 4.2 and 4.3: We establish
DP-completeness results for a variety of such exact generalized dominating set problems.
In particular, we prove in Section 4.2.1 that for any fixed integer i ≥ 5, it is DP-complete
to determine whether or not the domatic number of a given graph is exactly i . In contrast,
the problem of deciding whether or not δ(G) = 2, for some given graph G, is coNP-
complete.

An overview of all the results from Section 4 is given in Section 4.1. In Section 4.4
we observe that the results of Sections 4.2 and 4.3 can be generalized to completeness
results in the higher levels of the boolean hierarchy over NP. This generalization applies
Wagner’s technique [Wa1] mentioned above. In particular, we prove that determining
whether or not the domatic number of a given graph equals exactly one of k given values
is complete for BH2k(NP), thus expanding the list of problems known to be complete
for the levels of the boolean hierarchy over NP.

The boolean hierarchy over NP has been thoroughly investigated. For example, a
large number of definitions are known to be equivalent ([CGH+1], [KSW], [HR1], see
also [Ha]). It is known that if the boolean hierarchy collapses to some finite level, then
so does the polynomial hierarchy [Ka1], [CK], [BCO]. Hemaspaandra et al. studied
the question of whether and to what extent the order matters in which various oracle
sets from the boolean hierarchy are accessed [HHW]. Boolean hierarchies over classes
other than NP were intensely investigated as well: Gundermann et al. [GNW] and Beigel
et al. [BCO] studied boolean hierarchies over counting classes, Bertoni et al. [BBJ+]
studied boolean hierarchies over the class RP (“random polynomial time,” see [Ad]),
and Hemaspaandra and Rothe [HR1] studied the boolean hierarchy over UP (“unam-
bigous polynomial time,” introduced by Valiant [Va]) and over any set class closed under
intersection.

Section 4.5 raises the DP- and BH2k(NP)-completeness results obtained so far even
higher: We prove several variants of the domatic number problem complete for PNP

‖ ,
namely, DNP-Odd, DNP-Equ, and DNP-Geq. Thus, we expand the list of problems known
to be complete for this central complexity class.DNP-Odd asks whether or not the domatic
number of a given graph is an odd number. DNP-Equ asks whether or not the domatic
numbers of two given graphs are equal, and DNP-Geq asks, given the graphs G and H ,
whether or not δ(G) ≥ δ(H) is true. While these problems may not appear to be
overly natural, they might serve as good starting points for reductions showing the PNP

‖ -
completeness of other, more natural, problems. For example, the quite natural winner
problem for Carroll elections was shown to be PNP

‖ -complete via a reduction from a
problem dubbed TwoElectionRanking in [HHR1], which is analogous in structure
to the problem DNP-Geq. Similarly, the PNP

‖ -completeness of the quite natural winner
problem for Young elections was proven via a reduction from the problem Maximum
Set Packing Compare in [RSV]. Finally, the PNP

‖ -completeness of certain problems
related to heuristics for finding a minimum vertex cover [HRS] or a maxium independent
set [HR2] in a graph are shown via reductions from the analogs ofDNP-Geq andDNP-Equ
for the vertex cover problem and the independent set problem, respectively.

PNP
‖ was introduced by Papadimitriou and Zachos [PZ] and was intensely studied in a

wide variety of contexts. For example, among many other characterizations, PNP
‖ is known

to be equal to PNP[O(log)], the class of problems solvable in deterministic polynomial
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time by logarithmically many Turing queries to an NP oracle; see [He], [Wa2], [BH],
and [KSW]. Furthermore, it is known that if NP contains some PNP

‖ -hard problem, then
the polynomial hierarchy collapses to NP. Kadin [Ka2] proved that if NP has sparse
Turing-hard sets, then the polynomial hierarchy collapses to PNP

‖ . Krentel [Kr] studied
PNP
‖ and other levels of the polynomial hierarchy that are relevant for certain optimization

problems, see also [GRW1] and [GRW2]. Ogihara studied the truth-table and log-Turing
reducibilities in a general setting; his results in particular apply to PNP

‖ and related
classes [Og1]. In [Og2] he investigated the function analogs of PNP

‖ , see also [JT] and
[BKT]. Hemaspaandra and Wechsung [HW] characterized PNP

‖ and related classes in
terms of Kolmogorov complexity. Finally, PNP

‖ is central to the study of the query and
the truth-table hierarchies over NP (see, e.g., [KSW], [He], [Wa2], [BH], [Be1], [Ko2],
and [BCO]), to the optimal placement of PP (“probabilistic polynomial time,” defined by
Gill [Gi]) in the polynomial hierarchy [BHW], [Be2], to the study of the low hierarchy
and the extended low hierarchies [AH], [Ko1], [LS], and to many other topics.

In Section 5 we study the exact conveyor flow shop problem that we also prove com-
plete for the levels of the boolean hierarchy over NP. The conveyor flow shop problem,
which arises in real-world applications in the wholesale business, where warehouses are
supplied with goods from a central storehouse, was introduced and intensely studied by
Espelage and Wanke [EW1]. The present paper is the first to study the exact version of
this natural problem, which we find intriguing mainly due to its applications in practice.
For further results on this problem, we refer to [EW1]–[EW3] and [Es].

Finally, we conclude this paper with a number of open problems in Section 6.

2. Preliminaries and Notation

We start by introducing some graph-theoretical notation. For any graph G, V (G) denotes
the vertex set of G, and E(G) denotes the edge set of G. All graphs in this paper are
undirected, simple graphs. That is, edges are unordered pairs of vertices, and there are
neither multiple nor reflexive edges (i.e., for any two vertices u and v, there is at most
one edge of the form {u, v}, and there is no edge of the form {u, u}). Also, all graphs
considered do not have isolated vertices, yet they need not be connected in general.

For any vertex v ∈ V (G), the degree of v (denoted by degG(v)) is the number of
vertices adjacent to v in G; if G is clear from the context, we omit the subscript and
simply write deg(v). Let max-deg(G) = maxv∈V (G) deg(v) denote the maximum degree
of the vertices of graph G, and let min-deg(G) = minv∈V (G) deg(v) denote the minimum
degree of the vertices of graph G. The neighborhood of a vertex v in G is the set of all
vertices adjacent to v, i.e., N (v) = {w ∈ V (G) | {v,w} ∈ E(G)}. A partition of V (G)
into k pairwise disjoint subsets V1, V2, . . . , Vk satisfies V (G) =⋃k

i=1 Vi and Vi∩Vj = ∅
for 1 ≤ i < j ≤ k. For some of the reductions presented in this paper, we need the
following operations on graphs.

Definition 1. The join operation on graphs, denoted by⊕, is defined as follows: Given
two disjoint graphs A and B, their join A ⊕ B is the graph with vertex set V (A ⊕ B) =
V (A)∪V (B) and edge set E(A⊕B) = E(A)∪E(B)∪{{a, b} |a ∈ V (A) and b ∈ V (B)}.
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The disjoint union of any two graphs A and B is defined as the graph A ∪ B with
vertex set V (A) ∪ V (B) and edge set E(A) ∪ E(B).

Note that ⊕ is an associative operation on graphs and χ(A ⊕ B) = χ(A)+ χ(B).
We now define the domatic number problem.

Definition 2. For any graph G, a dominating set of G is a subset D ⊆ V (G) such that
for each vertex u ∈ V (G)−D, there exists a vertex v ∈ D with {u, v} ∈ E . The domatic
number of G, denoted by δ(G), is the maximum number of disjoint dominating sets.
Define the decision version of the domatic number problem by

DNP = {〈G, k〉 | G is a graph and k is a positive integer such that δ(G) ≥ k}.

Note that δ(G) ≤ min-deg(G)+1 for each graph G. For fixed k ≥ 3, DNP is known
to be NP-complete (see [GJ]), and it remains NP-complete for circular-arc graphs [Bo],
for split graphs (thus, in particular, for chordal and co-chordal graphs) [KS], and for
bipartite graphs (thus, in particular, for comparability graphs) [KS]. In contrast, DNP is
known to be polynomial-time solvable for certain other graph classes, including strongly
chordal graphs (thus, in particular, for interval graphs and path graphs) [Fa] and proper
circular-arc graphs [Bo]. For graph-theoretical notions and special graph classes not
defined in this paper, we refer to the monograph by Brandstädt et al. [BLS], a follow-up
to the classic text by Golumbic [Go].

Feige et al. [FHK] show that every graph G with n vertices has a domatic partition
with (1− o(1))(min-deg(G)+ 1)/ln n sets that can be found in polynomial time, which
implies a (1−o(1)) ln n approximation algorithm for the domatic number δ(G). This is a
tight bound, since they also show that, for any fixed constant ε > 0, the domatic number
cannot be approximated within a factor of (1 − ε) ln n, unless NP ⊆ DTIME(nlog log n).
Finally, Feige et al. [FHK] give a refined algorithm that yields a domatic partition of
�(δ(G)/ln max-deg(G)), which implies a O(ln max-deg(G)) approximation algorithm
for the domatic number δ(G). For more results on the domatic number problem, see
[FHK], [KS] and the references therein.

We assume that the reader is familiar with standard complexity-theoretic notions
and notation. For more background, we refer to any standard textbook on computational
complexity theory such as Papadimitriou’s book [Pa]. All completeness results in this
paper are with respect to the polynomial-time many-one reducibility, denoted by ≤p

m .
For sets A and B, define A≤p

m B if and only if there is a polynomial-time computable
function f such that for each x ∈ �∗, x ∈ A if and only if f (x) ∈ B. A set B is C-hard
for a complexity class C if and only if A≤p

m B for each A ∈ C. A set B is C-complete if
and only if B is C-hard and B ∈ C.

To define the boolean hierarchy over NP, we use the symbols∧ and∨, respectively,
to denote the complex intersection and the complex union of set classes. That is, for
classes C and D of sets, define

C ∧D = {A ∩ B | A ∈ C and B ∈ D};
C ∨D = {A ∪ B | A ∈ C and B ∈ D}.
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Definition 3 (Cai et al.). The boolean hierarchy over NP is inductively defined by:

BH1(NP) = NP,

BH2(NP) = NP ∧ coNP,

BHk(NP) = BHk−2(NP) ∨ BH2(NP) for k ≥ 3, and

BH(NP) =
⋃
k≥1

BHk(NP).

Note that DP = BH2(NP). In his seminal paper [Wa1], Wagner provided a set of
conditions sufficient to prove hardness results for the levels of the boolean hierarchy over
NP and for other complexity classes. His sufficient conditions were successfully applied
to classify the complexity of a variety of natural, important problems, see, e.g., [Wa1],
[HHR1], [HHR2], [HR2], [Ro], [HRS], and [RSV]. Below, we state one of Wagner’s
sufficient conditions that is relevant for this paper; see Theorem 5.1(3) in [Wa1].

Lemma 4 (Wagner). Let A be some NP-complete problem, let B be an arbitrary
problem, and let k ≥ 1 be fixed. If there exists a polynomial-time computable function
f such that the equivalence

‖{i | xi ∈ A}‖ is odd ⇔ f (x1, x2, . . . , x2k) ∈ B (1)

is true for all strings x1, x2, . . . , x2k ∈ �∗ satisfying that for each j with 1 ≤ j < 2k,
xj+1 ∈ A implies xj ∈ A, then B is BH2k(NP)-hard.

Let N = {0, 1, 2, . . .} denote the set of nonnegative integers, and let N+ = {1, 2,
3, . . .} denote the set of positive integers. We now define the exact versions of the domatic
number problem, parameterized by k-element sets Mk ⊆ N of noncontiguous integers.

Definition 5. Given any set Mk ⊆ N containing k noncontiguous integers, define the
problem

Exact-Mk-DNP = {G | G is a graph and δ(G) ∈ Mk}.

In particular, for each singleton M1 = {t}, we write Exact-t-DNP = {G | δ(G) = t}.

Note that if some elements of Mk were contiguous, one might encode problems of
lower complexity. For instance, if Mk happens to be just one interval of k contiguous
integers, Exact-Mk-DNP in fact is contained in DP, whereas Exact-Mk-DNP will be
shown to be BH2k(NP)-complete in Theorem 26 if Mk is a set of k sufficiently large
noncontiguous integers.

To apply Wagner’s sufficient condition from Lemma 4 in the proof of the main result
of this paper, Theorem 13 in Section 4.2.1, we need the following lemma due to Kaplan
and Shamir [KS] that gives a reduction from 3-Colorability to DNP with useful
properties. Since Kaplan and Shamir’s construction is used explicitly in the proofs of
Theorems 13 and 26, we present it below.
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Lemma 6 (Kaplan and Shamir). There exists a polynomial-time many-one reduc-
tion g from 3-Colorability to DNP with the following properties:

G ∈ 3-Colorability �⇒ δ(g(G)) = 3; (2)

G �∈ 3-Colorability �⇒ δ(g(G)) = 2. (3)

Proof. The reduction g maps any given graph G to a graph H such that the implica-
tions (2) and (3) are satisfied. Since it can be tested in polynomial time whether or not
a given graph is 2-colorable, we may assume, without loss of generality, that G is not
2-colorable. Recall that we also assume that G has no isolated vertices; note that the
domatic number of any graph is always at least 2 if it has no isolated vertices (see [GJ]).
Graph H is constructed from G by creating ‖E(G)‖ new vertices, one on each edge
of G, and by adding new edges such that the original vertices of G form a clique. Thus,
every edge of G induces a triangle in H , and every pair of nonadjacent vertices in G is
connected by an edge in H . The proofs of upcoming Theorems 13 and 26 explicitly use
this construction and such triangles, see Figure 1.

Let V (G) = {v1, v2, . . . , vn}. Formally, define the vertex set and the edge set of H
by

V (H) = V (G) ∪ {ui, j | {vi , vj } ∈ E(G)};
E(H) = {{vi , ui, j } | {vi , vj } ∈ E(G)} ∪ {{vj , ui, j } | {vi , vj } ∈ E(G)}

∪ {{vi , vj } | 1 ≤ i, j ≤ n and i �= j}.

Since, by construction, min-deg(H) = 2 and H has no isolated vertices, the in-
equality δ(H) ≤ min-deg(H)+ 1 implies that 2 ≤ δ(H) ≤ 3.

Suppose G ∈ 3-Colorability. Let C1, C2, and C3 be the three color classes
of G, i.e., Ck = {vi ∈ V (G) |vi is colored by color k}, for k ∈ {1, 2, 3}. Form a partition
of V (H) by Ĉk = Ck ∪ {ui, j | vi �∈ Ck and vj �∈ Ck}, for k ∈ {1, 2, 3}. Since for each k,
Ĉk ∩V (G) �= ∅ and V (G) induces a clique in H , every Ĉk dominates V (G) in H . Also,
every triangle {vi , ui, j , vj } contains one element from each Ĉk , so every Ĉk also dominates
{ui, j | {vi , vj } ∈ E(G)} in H . Hence, δ(H) = 3, which proves the implication (2).

Conversely, suppose δ(H) = 3. Given a partition of V (H) into three dominating
sets, Ĉ1, Ĉ2, and Ĉ3, color the vertices in Ĉk by color k. Every triangle {vi , ui, j , vj } is
3-colored, which implies that this coloring on V (G) induces a legal 3-coloring of G; so
G ∈ 3-Colorability. Hence, χ(G) = 3 if and only if δ(H) = 3. Since 2 ≤ δ(H) ≤
3, the implication (3) follows.

We now define two well-known problems that will be used later in our reductions.

Definition 7. Let X = {x1, x2, . . . , xn} be a finite set of variables.

• 1-3-SAT (“one-in-three satisfiability”): Let H be a boolean formula consisting
of a collection S = {S1, S2, . . . , Sm} of m sets of literals over X such that each Si

has exactly three members. H is in 1-3-SAT if and only if there exists a subset
T of the literals over X with ‖T ∩ Si‖ = 1 for each i , 1 ≤ i ≤ m.
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• NAE-3-SAT (“not-all-equal satisfiability”): Let H be a boolean formula con-
sisting of a collection C = {c1, c2, . . . , cm} of m clauses over X such that each ci

contains exactly three literals. H is in NAE-3-SAT if and only if there exists a
truth assignment for X that satisfies all clauses in C and such that in none of the
clauses, are all literals true.

Both problems were shown to be NP-complete by Schaefer [Sc]. Note that1-3-SAT
remains NP-complete even if all literals are positive.

3. A General Framework for Dominating Set Problems

Heggernes and Telle [HT] proposed a general, uniform approach to define graph prob-
lems by partitioning the vertex set of a graph into generalized dominating sets. Gener-
alized dominating sets are parameterized by two sets of nonnegative integers, σ and ρ,
which restrict the number of neighbors for each vertex in the partition. We adopt this
approach in defining the exact versions of such generalized dominating set problems.
Their computational complexity is studied in Section 4.

We now define the notions of (σ, ρ)-sets and (k, σ, ρ)-partitions introduced by
Heggernes and Telle [HT].

Definition 8 (Heggernes and Telle). Let G be a given graph, let σ ⊆ N and ρ ⊆ N be
given sets, and let k ∈ N+.

1. A subset U ⊆ V (G) of the vertices of G is said to be a (σ, ρ)-set if and only if
for each u ∈ U , ‖N (u) ∩ U‖ ∈ σ , and for each u �∈ U , ‖N (u) ∩ U‖ ∈ ρ.

2. A (k, σ, ρ)-partition of G is a partition of V (G) into k pairwise disjoint subsets
V1, V2, . . . , Vk such that Vi is a (σ, ρ)-set for each i , 1 ≤ i ≤ k.

3. Define the problem

(k, σ, ρ)-Partition = {G | G is a graph that has a (k, σ, ρ)-partition}.

Heggernes and Telle [HT] examined the (k, σ, ρ)-partitions of graphs for the param-
eters σ and ρ chosen among {0}, {1}, {0, 1}, N, and N+. In particular, they determined
the precise cut-off points between tractability and intractability for these problems. That
is, they determined the precise value of k for which the resulting (k, σ, ρ)-Partition
problem is NP-complete, yet it can be decided in polynomial time whether or not a given
graph has a (k − 1, σ, ρ)-partition. An overview of their (and previously known) results
is given in Table 1.

For example, (3,N,N+)-Partition is nothing other than the NP-complete do-
matic number problem: given a graph G, decide whether or not G can be partitioned into
three dominating sets. In contrast, (2,N,N+)-Partition is in P, and therefore the cor-
responding entry in Table 1 is 3 for σ = N and ρ = N+. A value of ∞ in Table 1 means
that this problem is efficiently solvable for all values of k. The value of ρ = {0} is not
considered, since all graphs have a (k, σ, {0})-partition if and only if they have the trivial
partition into k disjoint (σ, {0})-sets V1 = V (G) and Vi = ∅, for each i ∈ {2, . . . , k}.
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Table 1. NP-completeness for the problems
(k, σ, ρ)-Partition.

ρ

σ N N
+ {1} {0, 1}

N ∞− 3+ 2 ∞−
N
+ ∞− 2+ 2 ∞−

{1} 2− 2 3 3−
{0, 1} 2− 2 3 3−
{0} 3− 3 4 4−

Definition 9. Let σ and ρ be sets that are chosen among N, N+, {0}, {0, 1}, and {1},
and let k ∈ N+. We say that (k, σ, ρ)-Partition is a minimum problem if and only
if (k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition for each k ≥ 1, and we say that
(k, σ, ρ)-Partition is a maximum problem if and only if (k + 1, σ, ρ)-Partition ⊆
(k, σ, ρ)-Partition for each k ≥ 1.

The problems in Table 1 that are marked by a “+” are maximum problems, and the
problems that are marked by a “−” are minimum problems in the above sense. These
properties are stated in the following fact.

Fact 10.

1. For each k ≥ 1, for each σ ∈ {N,N+, {0}, {0, 1}, {1}}, and for each ρ ∈
{N, {0, 1}}, we have (k, σ, ρ)-Partition ⊆ (k + 1, σ, ρ)-Partition.

2. For each k ≥ 1 and for each σ ∈ {N,N+}, we have (k + 1, σ,N+)-Partition
⊆ (k, σ,N+)-Partition.

Proof. To see that all (k, σ, ρ)-Partition problems with ρ = N are minimum prob-
lems, note that we obtain a (k + 1, σ,N)-partition from a (k, σ,N)-partition by simply
adding the empty set Vk+1 = ∅. The proof for the case ρ = {0, 1} is analogous.

To prove that the (k, σ, ρ)-Partition problems withσ ∈ {N,N+} andρ = N+ are
maximum problems, note that once we have found a (k + 1, σ,N+)-partition into k + 1
pairwise disjoint sets V1, V2, . . . , Vk+1, the sets V1, V2, . . . , Vk−1, Ṽk with Ṽk = Vk∪Vk+1

are a (k, σ,N+)-partition as well.

Observe that those problems in Table 1 that are marked neither by a “+” nor by a “−”
are neither maximum nor minimum problems in the sense defined above. That is, we have
neither (k + 1, σ, ρ)-Partition ⊆ (k, σ, ρ)-Partition nor (k, σ, ρ)-Partition
⊆ (k + 1, σ, ρ)-Partition, since for each k ≥ 1, there exist graphs G such that G is
in (k, σ, ρ)-Partition but G is not in (�, σ, ρ)-Partition for any � ≥ 1 with � �= k.

For example, consider (k, {1}, {1})-Partition. By definition, this problem con-
tains all graphs G that can be partitioned into k subsets V1, V2, . . . , Vk such that, for each i ,
if v ∈ Vi then ‖N (v) ∩ Vi‖ = 1, and if v �∈ Vi then ‖N (v) ∩ Vi‖ = 1. It follows that
every graph in (k, {1}, {1})-Partition must be k-regular; that is, every vertex has de-
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gree k. Hence, for all k ≥ 1, (k, {1}, {1})-Partition and (k + 1, {1}, {1})-Partition
are disjoint, so neither (k, {1}, {1})-Partition ⊆ (k + 1, {1}, {1})-Partition nor
(k + 1, {1}, {1})-Partition ⊆ (k, {1}, {1})-Partition.

In the case of (k, {0},N+)-Partition, the complete graph Kn with n vertices is
in (n, {0},N+)-Partition but not in (k, {0},N+)-Partition for any k ≥ 1 with
k �= n. Almost the same argument applies to the case σ = N and ρ = {1}, except that
now Kn is in (k,N, {1})-Partition for k ∈ {1, n} but not in (�,N, {1})-Partition
for any � ≥ 1 with � �∈ {1, n}. Similar arguments work in the other cases.

Therefore, when defining the exact versions of generalized dominating set problems,
we confine ourselves to those (k, σ, ρ)-Partition problems that are minimum or
maximum problems in the above sense. For a maximum problem, its exact version
asks whether G ∈ (k, σ, ρ)-Partition but G �∈ (k + 1, σ, ρ)-Partition, and for
a minimum problem, its exact version asks whether G ∈ (k, σ, ρ)-Partition but
G �∈ (k − 1, σ, ρ)-Partition.

Definition 11. Let σ and ρ be sets that are chosen among N, N+, {0}, {0, 1}, and {1},
and let k ∈ N+. Define the exact version of (k, σ, ρ)-Partition by

Exact-(k, σ, ρ)-Partition

=




(k, σ, ρ)-Partition ∩ (k − 1, σ, ρ)-Partition
if k ≥ 2 and (k, σ, ρ)-Partition
is a minimum problem,

(k, σ, ρ)-Partition ∩ (k + 1, σ, ρ)-Partition
if k ≥ 1 and (k, σ, ρ)-Partition
is a maximum problem.

For example, the problem (k, {0},N)-Partition is equal to the k-colorability
problem, which is a minimization problem: given a graph G, find a partition into at most
k color classes such that any two adjacent vertices belong to distinct color classes. In
contrast, (k,N,N+)-Partition is equal to DNP, the domatic number problem, which
is a maximization problem.

Clearly, since (k, σ, ρ)-Partition is in NP, the problems defined in Definition 11
above are contained in DP. This fact is needed for the DP-completeness results in Sec-
tion 4.

Fact 12. Let σ and ρ be sets that are chosen among N, N+, {0}, {0, 1}, and {1}, and
let k ∈ N+. Then Exact-(k, σ, ρ)-Partition is in DP.

4. Exact Generalized Dominating Set Problems

4.1. Overview of the Results

In this section we prove DP-completeness for a number of problems defined in Section 3.
Our results from Sections 4.2 and 4.3 are summarized in Table 2.
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Table 2. DP-completeness for the problems
Exact-(k, σ, ρ)-Partition.

ρ

σ N N
+

N ∞ 5∗
N
+ ∞ 3∗

{1} 5∗ −
{0, 1} 5∗ −
{0} 4 −

The numbers in Table 2 indicate the best DP-completeness results currently known
for the exact versions of generalized dominating set problems, where the results from
this paper are marked by an asterisk.1 That is, they give the best value of k for which the
problem Exact-(k, σ, ρ)-Partition is known to be DP-complete. In some cases this
value is not yet optimal. For example, Exact-(5,N,N+)-Partition is known to be
DP-complete and Exact-(2,N,N+)-Partition is known to be coNP-complete. What
about Exact-(3,N,N+)-Partition and Exact-(4,N,N+)-Partition? Only the
DP-completeness of Exact-(4, {0},N)-Partition is known to be optimal [Ro].

The results stated in Table 2 can easily be extended to more general results involving
slightly more general problems complete in the higher levels of the boolean hierarchy
and in the class PNP

‖ , respectively. These results are presented in Sections 4.4 and 4.5.

4.2. The Case ρ = N+

For ρ = N
+, we consider the cases σ = N and σ = N

+ only. The corresponding two
problems are the only maximum problems in Table 1.

Recall that since (k,N,N+)-Partition and (k,N+,N+)-Partition are maxi-
mum problems, their exact versions are defined as follows:

Exact-(k, σ,N+)-Partition =
{

G
G ∈ (k, σ,N+)-Partition and

G �∈ (k + 1, σ,N+)-Partition

}
,

where σ ∈ {N,N+}.

4.2.1. The Case σ = N and ρ = N+. Recall that the problem (k,N,N+)-Partition
is equal to DNP, the domatic number problem. Consequently, its exact version Exact-
(k,N,N+)-Partition is just the problem Exact-k-DNP.

Theorem 13. For each i ≥ 5, Exact-i -DNP is DP-complete.

Proof. It is enough to prove the theorem for i = 5. By Fact 12, Exact-5-DNP is
contained in DP. The proof that Exact-5-DNP is DP-hard draws on Lemma 4 with

1 Again, a value of ∞ in Table 2 means that this problem is efficiently solvable for all values of k.
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k = 1 being fixed, with 3-Colorability being the NP-complete set A, and with
Exact-5-DNP being the set B from this lemma.

Fix any two graphs, G1 and G2, satisfying that if G2 is in 3-Colorability,
then so is G1. Without loss of generality, we assume that none of these two graphs
is 2-colorable, nor does it contain isolated vertices. Moreover, we may assume that
χ(Gj ) ≤ 4 for each j ∈ {1, 2}, without loss of generality, since the standard reduction
from 3-SAT to 3-Colorability (see [GJ]) maps each satisfiable formula to a graph
G with χ(G) = 3, and it maps each unsatisfiable formula to a graph G with χ(G) = 4.

We now define a polynomial-time computable function f that maps the graphs G1

and G2 to a graph H = f (G1,G2) such that the equivalence from Lemma 4 is satisfied.
Applying the Lemma 6 reduction g from 3-Colorability to DNP, we obtain two
graphs, H1 = g(G1) and H2 = g(G2), each satisfying the implications from Lemma 6.
Hence, both δ(H1) and δ(H2) are in {2, 3}, and δ(H2) = 3 implies δ(H1) = 3. The graph
H is constructed from the graphs H1 and H2 such that

δ(H) = δ(H1)+ δ(H2), (4)

which implies that f satisfies (1) from Lemma 4:

G1 ∈ 3-Colorability and G2 �∈ 3-Colorability

⇔ δ(H1) = 3 and δ(H2) = 2

⇔ δ(H) = δ(H1)+ δ(H2) = 5

⇔ f (G1,G2) = H ∈ Exact-5-DNP.

Applying Lemma 4 with k = 1, it follows that Exact-5-DNP is DP-complete.
We now prove (4). Note that the analogous property for the chromatic number

(i.e., χ(H) = χ(H1) + χ(H2)) is easy to achieve by simply joining the graphs H1

and H2 ([Wa1], see also [Ro]). However, for the domatic number, the construction is
more complicated. Construct a gadget connecting H1 and H2 as follows. Recalling the
construction from Lemma 6, for each edge {vi , vj }, a new vertex ui, j and two new
edges, {vi , ui, j } and {ui, j , vj }, are created. Further edges are added such that the original
vertices in G form a clique. Thus, every edge of G induces a triangle in H = g(G),
and every pair of nonadjacent vertices in G is connected by an edge in H . Let T1 with
V (T1) = {vq , uq,r , vr } be any fixed triangle in H1, and let T2 with V (T2) = {vs, us,t , vt }
be any fixed triangle in H2. Connect T1 and T2 using the gadget shown in Figure 1,
where a1, a2, . . . , a6 are new vertices. Using pairwise disjoint copies of the gadget from
Figure 1, connect each pair of triangles from H1 and H2 and call the resulting graph H .
Note that f is polynomial-time computable.

Since deg(ai ) = 5 for each gadget vertex ai , we have δ(H) ≤ 6, regardless of
whether the domatic numbers of H1 and H2 are 2 or 3. We now show that δ(H) = δ(H1)+
δ(H2). Let D1, D2, . . . , Dδ(H1) be δ(H1) pairwise disjoint sets dominating H1, and let
Dδ(H1)+1, Dδ(H1)+2, . . . , Dδ(H1)+δ(H2) be δ(H2) pairwise disjoint sets dominating H2.
Distinguish the following three cases.

Case 1: δ(H1) = δ(H2) = 3. Consider any fixed Dj , where 1 ≤ j ≤ 3. Since Dj

dominates H1, every triangle T1 of H1 has exactly one vertex in Dj . Fix T1, and suppose
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vr

vq

vt

vs

us;t

T2T1

a4 a5 a6

a1 a2 a3

uq;r

Fig. 1. Gadget connecting two triangles T1 and T2.

V (T1) = {vq , uq,r , vr } and, say, V (T1) ∩ Dj = {vq}; the other cases are analogous.
For each triangle T2 of H2, say T2 with V (T2) = {vs, us,t , vt }, let aT2

1 , aT2
2 , . . . , aT2

6 be
the gadget vertices connecting T1 and T2 as in Figure 1. Note that exactly one of these
gadget vertices, aT2

3 , is not adjacent to vq . For each triangle T2, add the missing gadget
vertex to Dj , and define D̂j = Dj ∪ {aT2

3 | T2 is a triangle of H2}. Since every vertex of
H2 is contained in some triangle T2 of H2 and since aT2

3 is adjacent to each vertex in T2,
D̂j dominates H2. Also, D̂j ⊇ Dj dominates H1, and since vq is adjacent to each aT2

i

except aT2
3 for each triangle T2 of H2, D̂j dominates every gadget vertex of H . Hence,

D̂j dominates H . By a symmetric argument, every set Dj , where 4 ≤ j ≤ 6, dominating
H2 can be extended to a set D̂j dominating the entire graph H . By construction, the sets
D̂j with 1 ≤ j ≤ 6 are pairwise disjoint. Hence, δ(H) = 6 = δ(H1)+ δ(H2).

Case 2: δ(H1) = 3 and δ(H2) = 2. As in Case 1, we can add appropriate gadget
vertices to the five given sets D1, D2, . . . , D5 to obtain five pairwise disjoint sets
D̂1, D̂2, . . . , D̂5 such that each D̂i dominates the entire graph H . It follows that 5 ≤
δ(H) ≤ 6. It remains to show that δ(H) �= 6. For a contradiction, suppose that δ(H) = 6.
Look at Figure 1 showing the gadget between any two triangles T1 and T2 belonging
to H1 and H2, respectively. Fix T1 with V (T1) = {vq , uq,r , vr }. The only way (except
for renaming the dominating sets) to partition the graph H into six dominating sets, say
E1, E2, . . . , E6, is to assign to the sets Ei the vertices of T1, of H2, and of the gadgets
connected with T1 as follows:

• E1 contains vq and the set {aT2
3 | T2 is a triangle in H2},

• E2 contains uq,r and the set {aT2
2 | T2 is a triangle in H2},

• E3 contains vr and the set {aT2
1 | T2 is a triangle in H2},

• E4 contains vs ∈ T2, for each triangle T2 of H2, and the set
{aT2

6 | T2 is a triangle in H2},
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• E5 contains us,t ∈ T2, for each triangle T2 of H2, and the set
{aT2

5 | T2 is a triangle in H2},
• E6 contains vt ∈ T2, for each triangle T2 of H2, and the set
{aT2

4 | T2 is a triangle in H2}.
Hence, all vertices from H2 must be assigned to the three dominating sets E4, E5,
and E6, which induces a partition of H2 into three dominating sets. This contradicts the
case assumption that δ(H2) = 2. Hence, δ(H) = 5 = δ(H1)+ δ(H2).

Case 3: δ(H1) = δ(H2) = 2. As in the previous two cases, we can add appropriate
gadget vertices to the four given sets D1, D2, D3, and D4 to obtain a partition of V (H)
into four sets D̂1, D̂2, D̂3, and D̂4 such that each D̂i dominates the entire graph H .
It follows that 4 ≤ δ(H) ≤ 6. By the same arguments as in Case 2, δ(H) �= 6. It
remains to show that δ(H) �= 5. For a contradiction, suppose that δ(H) = 5. Look
at Figure 1 showing the gadget between any two triangles T1 and T2 belonging to H1

and H2, respectively. Suppose H is partitioned into five dominating sets E1, E2, . . . , E5.
First, we show that neither T1 nor T2 can have two vertices belonging to the same

dominating set. Suppose otherwise, and let, for example, vq and uq,r both be in E1, and
let vr be in E2; all other cases are treated analogously. This implies that the vertices vs ,
us,t , and vt in T2 must be assigned to the other three dominating sets, E3, E4, and E5,
since otherwise one of the sets Ei would not dominate all gadget vertices aj , 1 ≤ j ≤ 6.
Since T1 is connected with each triangle of H2 via some gadget, the same argument
shows that V (H2) can be partitioned into three dominating sets, which contradicts the
assumption that δ(H2) = 2.

Hence, the vertices of T1 are assigned to three different dominating sets, say E1,
E2, and E3. Then every triangle T2 of H2 must have one of its vertices in E4, one in E5,
and one in either one of E1, E2, and E3. Again, this induces a partition of H2 into
three dominating sets, which contradicts the assumption that δ(H2) = 2. It follows that
δ(H) �= 5, so δ(H) = 4 = δ(H1)+ δ(H2).

By construction, δ(H2) = 3 implies δ(H1) = 3, and thus the case “δ(H1) = 2 and
δ(H2) = 3” cannot occur. The case distinction is complete, which proves (4) and the
theorem.

In contrast to Theorem 13, Exact-2-DNP is in coNP (and even coNP-complete) and
thus cannot be DP-complete unless the boolean hierarchy over NP collapses.

Theorem 14. Exact-2-DNP is coNP-complete.

Proof. The problem Exact-2-DNP can be written as

Exact-2-DNP = {G | δ(G) ≤ 2} ∩ {G | δ(G) ≥ 2}.

Since every graph without isolated vertices has a domatic number of at least 2 (see [GJ]),
the set {G | δ(G) ≥ 2} is in P. On the other hand, the set {G | δ(G) ≤ 2} is in coNP, so
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Exact-2-DNP is also in coNP. Note that the coNP-hardness of Exact-2-DNP follows
immediately via the Lemma 6 reduction g from 3-Colorability to DNP.

4.2.2. The Case σ = N+ and ρ = N+

Definition 15. For every graph G, define the maximum value k for which G has a
(k,N+,N+)-partition as follows:

γ (G) = max{k ∈ N+ | G ∈ (k,N+,N+)-Partition}.

Theorem 16. For each i ≥ 3, Exact-(i,N+,N+)-Partition is DP-complete.

Proof. Again, it is enough to prove the theorem for the case i = 3. By Fact 12,
Exact-(3,N+,N+)-Partition is contained in DP. We now prove that the problem is
DP-hard.

Heggernes and Telle [HT] presented a reduction from the problem NAE-3-SAT
to the problem (2,N+,N+)-Partition to prove the latter problem NP-complete.
We modify their reduction as follows. Let two boolean formulas H1 = (X, Ĉ) and
H2 = (Y, D̂) be given, with disjoint variable sets, X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . , yr }, and with disjoint clause sets, Ĉ = {c1, c2, . . . , cm} and D̂ = {d1, d2,

. . . , ds}. If the variable sets consist of less than two variables, we put additional variables
into the sets. Moreover, we may assume, without loss of generality, that every literal
appears in at least one clause, since otherwise we can easily alter the given formulas H1

and H2, without changing membership in NAE-3-SAT, so that they are of this form.
For any clause c = (x ∨ y ∨ z), define č = (x ∨ y ∨ z), where x , y, and z,

respectively, denotes the negation of the literal x , y, and z. Define Č = {č1, č2, . . . , čm}
and Ď = {ď1, ď2, . . . , ďs}, and define C = Ĉ ∪ Č and D = D̂ ∪ Ď. Note that due to the
not-all-equal property, we have

(X,C) ∈ NAE-3-SAT ⇔ (X, Ĉ) ∈ NAE-3-SAT

⇔ (X, Č) ∈ NAE-3-SAT

and

(Y, D) ∈ NAE-3-SAT ⇔ (Y, D̂) ∈ NAE-3-SAT

⇔ (Y, Ď) ∈ NAE-3-SAT.

We apply Lemma 4 with k = 1 being fixed, with NAE-3-SAT being the NP-
complete problem A, and with Exact-(3,N+,N+)-Partition being the set B from
this lemma. Let H1 and H2 be such that H2 ∈ NAE-3-SAT implies H1 ∈ NAE-3-SAT.
Our polynomial-time reduction f transforms H1 and H2 into a graph G = f (H1, H2)

with the property

(H1 ∈ NAE-3-SAT ∧ H2 �∈ NAE-3-SAT) ⇔ γ (G) = 3. (5)

The reduction f is defined as follows. For H1, we create an 8-clique A8 with vertices
a1, a2, . . ., a8. We do the same for H2, creating an 8-clique B8 with vertices b1, b2, . . ., b8.
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Fig. 2. Exact-(3,N+,N+)-Partition is DP-complete: graph G = f (H1, H2).

For each i with 1 ≤ i ≤ n, we create two vertices, xi and xi , for the variable xi . For each
j with 1 ≤ j ≤ r , we create two vertices, yj and yj , for the variable yj . Every vertex xi

and xi is connected to both a1 and a2, and every vertex yj and yj is connected to both
b1 and b2. For each pair of variables {xi , yj }, we create one vertex ui, j that is connected
to the four vertices xi , xi , yj , and yj . Finally, for each clause ci ∈ C and dj ∈ D with
1 ≤ i ≤ m and 1 ≤ j ≤ s, we create the two vertices ci and dj . Each such clause vertex
is connected to the vertices representing the literals in that clause. Additionally, every
vertex ci is connected to both a1 and a2, and every vertex dj is connected to both b1

and b2. This completes the construction of the graph G = f (H1, H2).
Figure 2 shows the graph G resulting from the reduction f applied to the two

formulas

H1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) and

H2 = (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y2 ∨ y3).

Note that γ (G) ≤ 4, since the degree of each ui, j is four. We have three cases to
distinguish.

Case 1: H1 ∈ NAE-3-SAT and H2 ∈ NAE-3-SAT. Let t be a truth assignment sat-
isfying H1, and let t̃ be a truth assignment satisfying H2. We can partition G into four
(N+,N+)-sets V1, V2, V3, and V4 as follows:

V1 = Ĉ ∪ Č ∪ {a5, a6} ∪ {b1, b3} ∪ {x | x is a literal over X and t (x) = true},
V2 = {ui, j | (1 ≤ i ≤ n − 1 ∧ j = 1) ∨ (i = n ∧ 2 ≤ j ≤ r)} ∪ {a7, a8} ∪ {b2, b4}

∪ {x | x is a literal over X and t (x) = false},
V3 = D̂ ∪ Ď ∪ {a1, a3} ∪ {b5, b6} ∪ {y | y is a literal over Y and t̃(y) = true},
V4 = {ui, j | (i = n ∧ j = r) ∨ (1 ≤ i ≤ n − 1 ∧ 2 ≤ j ≤ r)} ∪ {a2, a4} ∪ {b7, b8}

∪ {y | y is a literal over Y and t̃(y) = false}.
Thus, γ (G) ≥ 4. Since γ (G) ≤ 4, it follows that γ (G) = 4 in this case.
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Case 2: H1 ∈ NAE-3-SAT and H2 /∈ NAE-3-SAT. Let t be a truth assignment sat-
isfying H1. We can partition G into three (N+,N+)-sets V1, V2, and V3 as follows:

V1 = Ĉ ∪ Č ∪ {a5, a6} ∪ {b1, b3} ∪ {x | x is a literal over X and t (x) = true},
V2 = {ui, j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ r} ∪ {a7, a8} ∪ {b2, b4}

∪ {x | x is a literal over X and t (x) = false},
V3 = D̂ ∪ Ď ∪ {a1, a2, a3, a4} ∪ {b5, b6, b7, b8} ∪ {y | y is a literal over Y }.

Thus, 3 ≤ γ (G) ≤ 4. For a contradiction, suppose that γ (G) = 4, with a partition of G
into four (N+,N+)-sets, say U1, U2, U3, and U4. Vertex u1,1 is adjacent to exactly four
vertices, namely to x1, x1, y1 and y1. These four vertices must then be in four distinct
sets of the partition. Without loss of generality, suppose that x1 ∈ U1, x1 ∈ U2, y1 ∈ U3,
and y1 ∈ U4. For each j with 2 ≤ j ≤ r , the vertices yj and yj are connected to x1 and
x1 via vertex u1, j , so it follows that either yj ∈ U3 and yj ∈ U4, or yj ∈ U4 and yj ∈ U3.

Every clause vertex dj , 1 ≤ j ≤ r , is connected only to the vertices representing
its literals and to the vertices b1 and b2, which therefore must be in the sets U1 and U2,
respectively. Thus, every clause vertex dj is connected to at least one literal vertex in U3

and to at least one literal vertex in U4. This describes a valid truth assignment for H2 in
the not-all-equal sense. This is a contradiction to the case assumption H2 /∈ NAE-3-SAT.

Case 3: H1 �∈ NAE-3-SAT and H2 �∈ NAE-3-SAT. A valid partition of G into two
(N+,N+)-sets is

V1 = {ui, j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ r} ∪ {xi | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ r}
∪ {a1, a3, a5, a7} ∪ {b1, b3, b5, b7},

V2 = Ĉ ∪ Č ∪ D̂ ∪ Ď ∪ {xi | 1 ≤ i ≤ n} ∪ {yj | 1 ≤ j ≤ r}
∪ {a2, a4, a6, a7} ∪ {b2, b4, b6, b8}.

Thus, 2 ≤ γ (G) ≤ 4. By the same argument as in Case 2, γ (G) �= 4. For a contradiction,
suppose thatγ (G) = 3, with a partition of G into three (N+,N+)-sets, say U1, U2, and U3.
Without loss of generality, assume that x1 and x1 belong to distinct Ui sets,2 say x1 ∈ U1

and x1 ∈ U2.
It follows that for each j with 1 ≤ j ≤ r , at least one of yj or yj has to be in U3. If

both vertices are in U3, then we have

(∀i : 1 ≤ i ≤ n) [either xi ∈ U1 and xi ∈ U2, or xi ∈ U2 and xi ∈ U1]. (6)

Since H1 �∈ NAE-3-SAT, for each truth assignment t for H1, there exists a clause ci ∈ Ĉ
such that ci = (x ∨ y ∨ z) and the literals x , y, and z are either simultaneously true
or simultaneously false under t . Note that for the corresponding clause či ∈ Č , which
contains the negations of x , y, and z, the truth value of its literals is flipped under t . That
is, t (x) = 1− t (x), t (y) = 1− t (y), and t (z) = 1− t (z). Since the corresponding clause

2 If x1 and x1 both belong to the same set Ui , then each yj and yj must belong to distinct sets Uk and U�,
k �= �, since u1, j is connected with x1, x1, yj , and yj . Thus, a symmetric argument works for yj and yj in this
case.
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vertex ci is adjacent to x , y, z, a1, and a2, it follows that x , y, and z are in the same set
of the partition, say in U1. Hence, either a1 ∈ U2 and a2 ∈ U3, or a1 ∈ U3 and a2 ∈ U2.
Similarly, since the clause vertex či is adjacent to x , y, z, a1, and a2, the vertices x , y,
z are in the same set of the partition that must be distinct from U1. Let U2, say, be this
set. It follows that either a1 ∈ U1 and a2 ∈ U3, or a1 ∈ U3 and a2 ∈ U1, which is a
contradiction.

Each of the remaining subcases can be reduced to (6), and the above contradiction
follows. Hence, γ (G) = 2.

By construction, the case “H1 �∈ NAE-3-SAT and H2 ∈ NAE-3-SAT” cannot occur,
since it contradicts our assumption that H2 ∈ NAE-3-SAT implies H1 ∈ NAE-3-SAT.
The case distinction is complete. Thus, we obtain

‖{i | Hi ∈ NAE-3-SAT}‖ is odd ⇔ H1 ∈ NAE-3-SAT ∧ H2 �∈ NAE-3-SAT
⇔ γ (G) = 3,

which proves (5). Thus, (1) of Lemma 4 is fulfilled, so Exact-(3,N+,N+)-Partition
is DP-complete.

In contrast to Theorem 16, Exact-(1,N+,N+)-Partition is in coNP (and even
coNP-complete) and thus cannot be DP-complete unless the boolean hierarchy over NP
collapses.

Theorem 17. Exact-(1,N+,N+)-Partition is coNP-complete.

Proof. Exact-(1,N+,N+)-Partition is in coNP, since it can be written as

Exact-(1,N+,N+)-Partition = A ∩ B

with A = (1,N+,N+)-Partition being in P and with B = (2,N+,N+)-Partition
being in NP. Note that the coNP-hardness of Exact-(1,N+,N+)-Partition follows
immediately via the original reduction from NAE-3-SAT to (2,N+,N+)-Partition
presented in [HT].

4.3. The Case ρ = N
In this section we consider the minimum problems Exact-(k, σ,N)-Partition,
where σ is chosen from {N,N+, {0}, {0, 1}, {1}}. Depending on the value of k ≥ 2, we
ask how hard it is to decide whether a given graph G has a (k, σ,N)-partition but not a
(k − 1, σ,N)-partition.

4.3.1. The Cases σ ∈ {N,N+} and ρ = N. These cases are trivial, since (k,N,N)-
Partition and (k,N+,N)-Partition are in P for each k ≥ 1, which outright implies
that the problems Exact-(k,N,N)-Partition and Exact-(k,N+,N)-Partition
are in P as well.
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4.3.2. The Case σ = {0} and ρ = N. Recall that the problem (k, {0},N)-Partition
is equal to the k-colorability problem defined in Section 2. The question about the
complexity of the exact versions of this problem was first addressed by Wagner [Wa1]
and optimally solved by Rothe [Ro].

Theorem 18 (Rothe). Exact-(4, {0},N)-Partition is DP-complete.

In contrast to Theorem 18, Exact-(3, {0},N)-Partition is in NP (and even
NP-complete) and thus cannot be DP-complete unless the boolean hierarchy over NP
collapses.

Theorem 19. Exact-(3, {0},N)-Partition is NP-complete.

4.3.3. The Case σ = {0, 1} and ρ = N

Definition 20. For every graph G, define the minimum value of k for which G has a
(k, {0, 1},N)-partition as follows:

α(G) = min{k ∈ N+ | G ∈ (k, {0, 1},N)-Partition}.

Theorem 21. For each i ≥ 5, Exact-(i, {0, 1},N)-Partition is DP-complete.

Proof. Again, it is enough to prove the theorem for the case i = 5. By Fact 12,
Exact-(5, {0, 1},N)-Partition is contained in DP. So it remains to prove DP-hardness.
Again, we apply Wagner’s Lemma 4 with k = 1 being fixed, with 1-3-SAT being the
NP-complete problem A, and with Exact-(5, {0, 1},N)-Partition being the set B
from this lemma.

In their paper [HT], Heggernes and Telle presented a ≤p
m -reduction f from1-3-SAT

to (2, {0, 1},N)-Partition with the following properties:

H ∈ 1-3-SAT �⇒ α( f (H)) = 2,

H �∈ 1-3-SAT �⇒ α( f (H)) = 3.

In short, reduction f works as follows. Let H be any given boolean formula that con-
sists of a collection S = {S1, S2, . . . , Sm} of m sets of literals over X = {x1, x2, . . . , xn}.
Without loss of generality, we may assume that all literals in H are positive; recall the
remark immediately after Definition 7. Reduction f maps H to a graph G as follows. For
each set Si = {x, y, z}, there is a 4-clique Ci in G induced by the vertices xi , yi , zi , and ai .
For each literal x , there is an edge ex in G. For each Si in which x occurs, both endpoints
of ex are connected to the vertex xi in Ci corresponding to x ∈ Si . Finally, there is yet an-
other 4-clique induced by the vertices s, t1, t2, and t3. For each i with 1 ≤ i ≤ m, vertex s
is connected to ai . This completes the reduction f . Figure 3 shows the graph G resulting
from the reduction f applied to the formula H = (x ∨ y∨ z)∧ (v∨w∨ x)∧ (u∨w∨ z).
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Fig. 3. Heggernes and Telle’s reduction f from 1-3-SAT to (2, {0, 1},N)-Partition.

In order to apply Lemma 4, we need to find a reduction g satisfying

(H1 ∈ 1-3-SAT ∧ H2 �∈ 1-3-SAT) ⇔ α(g(H1, H2)) = 5 (7)

for any two given instances H1 and H2 such that H2 ∈ 1-3-SAT implies H1 ∈ 1-3-SAT.
Reduction g is constructed from f as follows. Let G1,1 and G1,2 be two disjoint

copies of the graph f (H1), and let G2,1 and G2,2 be two disjoint copies of the graph
f (H2). Define Gi to be the disjoint union of Gi,1 and Gi,2, for i ∈ {1, 2}. Define the
graph G = g(H1, H2) to be the join of G1 and G2; see Definition 1. That is,

g(H1, H2) = G = G1 ⊕ G2 = (G1,1 ∪ G1,2)⊕ (G2,1 ∪ G2,2).

Figure 4 shows the graph G resulting from the reduction g applied to the formulas

H1 = (x ∨ y ∨ z) ∧ (v ∨ w ∨ x) ∧ (u ∨ w ∨ z) and

H2 = (c ∨ d ∨ e) ∧ (e ∨ f ∨ g) ∧ (g ∨ h ∨ i) ∧ (i ∨ j ∨ c).

Let a = α(G1,1) = α(G1,2) and b = α(G2,1) = α(G2,2). Clearly, α(G1) = a,
α(G2) = b, and α(G) ≤ a + b. Simply partition G the same way as graphs G1 and G2

were partitioned before. Note that we obtain 8-cliques in G as a result of joining pairs
of 4-cliques from G1 and G2. Thus, α(G) ≥ 4, since an 8-clique has to be partitioned
into at least four disjoint ({0, 1},N)-sets.

To prove that α(G) = α(G1) + α(G2) = a + b, let k = α(G). Thus, we know
4 ≤ k ≤ a + b. For a contradiction, suppose that k < a + b. Distinguish the following
cases.
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G1;1 G1 G1;2

L

G2;1 G2 G2;2

Fig. 4. Exact-(5, {0, 1},N)-Partition is DP-complete: graph G = g(H1, H2).

Case 1: a = b = 2. Then k < 4 is a contradiction to k ≥ 4.

Case 2: a = 2 and b = 3. Then k = 4 < 5 = a + b. One of the four disjoint
({0, 1},N)-sets consists of at least one vertex u in G1 and one vertex v in G2. (Oth-
erwise, it would induce a partition of less than two ({0, 1},N)-sets in G1 or of less than
three ({0, 1},N)-sets in G2, which contradicts our assumption a = 2 and b = 3.) Sup-
pose that this set is V1. Then, since σ = {0, 1} and since u is adjacent to every vertex
in G2 and v is adjacent to every vertex in G1, we have V1 = {u, v}. However, there
is no way to assign the 8-cliques, which do not contain u or v, to the remaining three
({0, 1},N)-sets in order to obtain a (4, {0, 1},N)-partition for G. This is a contradiction,
and our assumption k < a + b = 5 does not hold. Thus, k = 5.

Case 3: a = 3 and b = 2. This case cannot occur, since we have to prove (7) only for
instances H1 and H2 such that H2 ∈ 1-3-SAT implies H1 ∈ 1-3-SAT.

Case 4: a = b = 3. By the same argument used in Case 2, k = 4 does not hold.
Suppose k = 5. As seen before, one of the sets in the partition must contain exactly
one vertex u from G1 and exactly one vertex v from G2. Let V1 = {u, v} be this set.
There are four sets left for the partition, say V2, V3, V4, and V5. Every set Vi can have
only vertices from either G1 or G2. This means that two of these sets cover all vertices
in G1 except for u. Vertex u is either in G1,1 or in G1,2, which implies that one of these
induced subgraphs (G1,1 or G1,2) has a (2, {0, 1},N)-partition. This is a contradiction to
a = 3. Thus, k = 6.
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Thus, α(G) = α(G1)+ α(G2), which implies (7) and thus fulfills (1) of Lemma 4:

‖{i | Hi ∈ 1-3-SAT}‖ is odd ⇔ H1 ∈ 1-3-SAT ∧ H2 /∈ 1-3-SAT

⇔ α(G1) = 2 ∧ α(G2) = 3

⇔ α(G) = 5.

By Lemma 4, Exact-(5, {0, 1},N)-Partition is DP-complete.

In contrast to Theorem 21, Exact-(2, {0, 1},N)-Partition is in NP (and even
NP-complete) and thus cannot be DP-complete unless the boolean hierarchy over NP
collapses.

Theorem 22. Exact-(2, {0, 1},N)-Partition is NP-complete.

Proof. Exact-(2, {0, 1},N)-Partition is in NP, since it can be written as

Exact-(2, {0, 1},N)-Partition = A ∩ B

with A = (2, {0, 1},N)-Partitionbeing in NP and with B = (1, {0, 1},N)-Partition
being in P. NP-hardness follows immediately via the reduction f defined in the proof
of Theorem 21, see Figure 3:

H ∈ 1-3-SAT ⇔ f (H) ∈ Exact-(2, {0, 1},N)-Partition.

Thus, Exact-(2, {0, 1},N)-Partition is NP-complete.

4.3.4. The Case σ = {1} and ρ = N

Definition 23. For every graph G, define the minimum value k for which G has a
(k, {1},N)-partition as follows:

β(G) = min{k ∈ N+ | G ∈ (k, {1},N)-Partition}.

Theorem 24. For each i ≥ 5, Exact-(i, {1},N)-Partition is DP-complete.

Proof. Clearly, α(G) ≤ β(G) for all graphs G. Conversely, we show that α(G) ≥
β(G). It is enough to do so for all graphs G = f (H) resulting from any given instance
H of1-3-SAT via the reduction f in Theorem 21. If H ∈ 1-3-SAT, we haveα(G) = 2.
Using the same partition, we even get two ({1},N)-sets for G. Every vertex of G has
exactly one neighbor, which is in the same set of the partition as the vertex itself.
If S �∈ 1-3-SAT, then α(G) = 3. We can then partition G into three ({1},N)-sets: V1

consists of the vertices s and t1 plus the endpoints of each edge ex . V2 consists of t2 and t3,
every vertex ai , and one more vertex in the 4-clique Ci , for each i with 1 ≤ i ≤ 2m. The
two remaining vertices in each Ci are then put into the set V3. Hence, α(G) = β(G).
The rest of the proof is analogous to the proof of Theorem 21.
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In contrast to Theorem 24, Exact-(2, {1},N)-Partition is in NP (and even
NP-complete) and thus cannot be DP-complete unless the boolean hierarchy over NP
collapses. The proof follows from the proofs of Theorems 22 and 24 and is omitted here.

Theorem 25. Exact-(2, {1},N)-Partition is NP-complete.

4.4. Completeness in the Higher Levels of the Boolean Hierarchy

In this section we show that the results of the previous two subsections can be generalized
to higher levels of the boolean hierarchy over NP. We exemplify this observation only for
the case of Theorem 13. Using the techniques of Wagner [Wa1], it is a matter of routine
to obtain the analogous results for the other exact generalized dominating set problems.

For each fixed set Mk containing k noncontiguous integers not smaller than 4k + 1,
we show that Exact-Mk-DNP is complete for BH2k(NP), the 2kth level of the boolean
hierarchy over NP. Note that the special case of k = 1 in Theorem 26 yields Theo-
rem 13. Note also that the specific set Mk defined in Theorem 26 gives the smallest k
noncontiguous numbers for which BH2k(NP)-completeness of Exact-Mk-DNP can be
achieved by the proof method of Theorem 26. However, Theorem 26 may not be optimal
yet; see the open questions in Section 6.

Theorem 26. For fixed k ≥ 1, let Mk = {4k + 1, 4k + 3, . . . , 6k − 1}. Then Exact-
Mk-DNP is BH2k(NP)-complete.

Proof. To show that Exact-Mk-DNP is contained in BH2k(NP), partition the problem
into k subproblems: Exact-Mk-DNP = ⋃

i∈Mk
Exact-i-DNP. Every set Exact-i-DNP

can be rewritten as

Exact-i-DNP = {G | δ(G) ≥ i} ∩ {G | δ(G) < i + 1}.

Clearly, the set {G | δ(G) ≥ i} is in NP, and the set {G | δ(G) < i + 1} is in coNP. It
follows that Exact-i-DNP is in DP, for each i ∈ Mk . By definition, Exact-Mk-DNP is
in BH2k(NP).

The proof that Exact-Mk-DNP is BH2k(NP)-hard straightforwardly generalizes the
proof of Theorem 13. Again, we draw on Lemma 4 with 3-Colorability being the
NP-complete set A and with Exact-Mk-DNP being the set B from this lemma. Fix any
2k graphs G1,G2, . . . ,G2k satisfying that for each j with 1 ≤ j < 2k, if Gj+1 is in
3-Colorability, then so is Gj . Without loss of generality, we assume that none of
these graphs Gj is 2-colorable, nor does it contain isolated vertices, and we assume that
χ(Gj ) ≤ 4 for each j . Applying the Lemma 6 reduction g from 3-Colorability
to DNP, we obtain 2k graphs Hj = g(Gj ), 1 ≤ j ≤ 2k, each satisfying the implica-
tions (2) and (3). Hence, for each j , δ(Hj ) ∈ {2, 3}, and δ(Hj+1) = 3 implies δ(Hj ) = 3.

Now, generalize the construction of graph H in the proof of Theorem 13 as follows.
For any fixed sequence T1, T2, . . . , T2k of triangles, where Ti belongs to Hi , add 6k new
gadget vertices a1, a2, . . . , a6k and, for each i with 1 ≤ i ≤ 2k, associate the three gadget
vertices a1+3(i−1), a2+3(i−1), and a3i with the triangle Ti . For each i with 1 ≤ i ≤ 2k,
connect Ti with every Tj , where 1 ≤ j ≤ 2k and i �= j , via the same three gadget vertices
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a1+3(i−1), a2+3(i−1), and a3i associated with Ti the same way T1 and T2 are connected in
Figure 1 via the vertices a1, a2, and a3.

It follows that deg(ai ) = 6k−1 for each i , so δ(H) ≤ 6k. An argument analogous to
the case distinction in the proof of Theorem 13 shows that δ(H) =∑2k

j=1 δ(Hj ). Hence,

‖{i | Gi ∈ 3-Colorability}‖ is odd

⇔ (∃i : 1 ≤ i ≤ k)[χ(G1) = · · · = χ(G2i−1) = 3 and

χ(G2i ) = · · · = χ(G2k) = 4]

⇔ (∃i : 1 ≤ i ≤ k)[δ(H1) = · · · = δ(H2i−1) = 3 and

δ(H2i ) = · · · = δ(H2k) = 2]

⇔ (∃i : 1 ≤ i ≤ k)

[
δ(H) =

2k∑
j=1

δ(Hj ) = 3(2i − 1)+ 2(2k − 2i + 1)

]

⇔ (∃i : 1 ≤ i ≤ k) [δ(H) = 4k + 2i − 1]

⇔ δ(H) ∈ {4k + 1, 4k + 3, . . . , 6k − 1}
⇔ f (G1,G2, . . . ,G2k) = H ∈ Exact-Mk-DNP.

Thus, f satisfies (1). By Lemma 4, Exact-Mk-DNP is BH2k(NP)-complete.

4.5. Domatic Number Problems Complete for Parallel Access to NP

In this section we consider the problem of deciding whether or not the domatic number of
a given graph is an odd integer, and the problem of comparing the domatic numbers of two
given graphs. Applying the techniques of the previous section, we prove in Theorem 29
below that these variants of the domatic number problem are complete for PNP

‖ , the
class of problems that can be solved by a deterministic polynomial-time Turing machine
making parallel (a.k.a. “nonadaptive” or “truth-table”) queries to some NP oracle set.
Other characterizations of PNP

‖ and further results related to this important class are listed
in the Introduction.

Definition 27. Define the following variants of the domatic number problem:

DNP-Odd = {G | G is a graph such that δ(G) is odd};
DNP-Equ = {〈G, H〉 | G and H are graphs such that δ(G) = δ(H)};
DNP-Geq = {〈G, H〉 | G and H are graphs such that δ(G) ≥ δ(H)}.

Wagner provided a sufficient condition for proving PNP
‖ -hardness that is analogous to

Lemma 4 except that in Lemma 28 the value of k is not fixed; see Theorem 5.2 in [Wa1].
The Introduction gives a list of related PNP

‖ -completeness results for which Wagner’s
technique was applied.

Lemma 28 (Wagner). Let A be some NP-complete problem and B be an arbitrary
problem. If there exists a polynomial-time computable function f such that the
equivalence

‖{i | xi ∈ A}‖ is odd ⇔ f (x1, x2, . . . , x2k) ∈ B (8)
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is true for each k ≥ 1 and for all strings x1, x2, . . . , x2k ∈ �∗ satisfying that for each j
with 1 ≤ j < 2k, xj+1 ∈ A implies xj ∈ A, then B is PNP

‖ -hard.

Theorem 29. DNP-Odd, DNP-Equ, and DNP-Geq each are PNP
‖ -complete.

Proof. It is easy to see that each of the problems DNP-Odd, DNP-Equ, and DNP-Geq
belongs to PNP

‖ , since the domatic number of a given graph can be determined exactly
by parallel queries to the NP oracle DNP. It remains to prove that each of these problems
is PNP

‖ -hard. For DNP-Odd, this follows immediately from the proof of Theorems 13
and 26, respectively, using Lemma 28.

We now show that DNP-Equ is PNP
‖ -hard by applying Lemma 28 with A being

the NP-complete problem 3-Colorability and B being DNP-Equ. Fix any k ≥ 1,
and let G1,G2, . . . ,G2k be any given sequence of graphs satisfying that for each j with
1 ≤ j < 2k, if Gj+1 is 3-colorable, then so is Gj . Since PNP

‖ is closed under complement,
(8) from Lemma 28 can be replaced by

‖{i | Gi ∈ 3-Colorability}‖ is even

⇔ f (G1,G2, . . . ,G2k) ∈ DNP-Equ. (9)

As in the proof of Theorem 26, construct the graphs H1, H2, . . . , H2k from the given
graphs G1,G2, . . . ,G2k according to Lemma 6, where each Hj = g(Gj ) satisfies the
implications (2) and (3). Let × denote the associative operation on graphs constructed in
the proof of Theorem 26 to sum up the domatic numbers of the given graphs, and define
the graphs:

Godd = H1 × H3 × · · · × H2k−1,

Geven = H2 × H4 × · · · × H2k .

We now prove (9). From left to right we have

‖{i | Gi ∈ 3-Colorability}‖ is even

�⇒ (∀i : 1 ≤ i ≤ k)[δ(H2i−1) = δ(H2i )]

�⇒
∑

1≤i≤k

δ(H2i−1) =
∑

1≤i≤k

δ(H2i )

�⇒ δ(Godd) = δ(Geven)

�⇒ 〈Godd,Geven〉 = f (G1,G2, . . . ,G2k) ∈ DNP-Equ.

From right to left we have

‖{i | Gi ∈ 3-Colorability}‖ is odd

�⇒ (∃i : 1 ≤ i ≤ k)[δ(H2i−1) = 3 ∧ δ(H2i ) = 2 and

δ(H2 j−1) = δ(H2 j ) for j �= i]

�⇒ −1 +
∑

1≤i≤k

δ(H2i−1) =
∑

1≤i≤k

δ(H2i )



Complexity of the Exact Domatic Number Problem 661

�⇒ δ(Godd)− 1 = δ(Geven)

�⇒ 〈Godd,Geven〉 = f (G1,G2, . . . ,G2k) /∈ DNP-Equ.

Lemma 28 implies that DNP-Equ is PNP
‖ -complete.

The above proof for DNP-Equ also gives PNP
‖ -completeness for DNP-Geq.

5. The Exact Conveyor Flow Shop Problem

5.1. NP-Completeness

The conveyor flow shop problem is a minimization problem arising in real-world ap-
plications in the wholesale business, where warehouses are supplied with goods from
a central storehouse. Suppose you are given m machines, P1, P2, . . . , Pm , and n jobs,
J1, J2, . . . , Jn . Conveyor belt systems are used to convey jobs from machine to machine
at which they are to be processed in a “permutation flow shop” manner. That is, the jobs
visit the machines in the fixed order P1, P2, . . . , Pm , and the machines process the jobs in
the fixed order J1, J2, . . . , Jn . An (n ×m) task matrixM = (µj,p)j,p with µj,p ∈ {0, 1}
provides the information which job has to be processed at which machine: µj,p = 1 if
job Jj is to be processed at machine Pp, and µj,p = 0 otherwise. Every machine can
process at most one job at a time. There is one worker supervising the system. Every
machine can process a job only if the worker is present, which means that the worker
occasionally has to move from one machine to another. If the worker is currently not
present at some machine, jobs can be queued in a buffer at this machine. The objective is
to minimize the movement of the worker, where we assume the “unit distance” between
any two machines, i.e., to measure the worker’s movement, we simply count how many
times he has switched machines until the complete task matrix has been processed.3 Let
�min(M) denote the minimum number of machine switches needed for the worker to
process a given task matrixM completely, where the minimum is taken over all possible
orders in which the tasks in M can be processed. Define the decision version of the
conveyor flow shop problem by

CFSP = {〈M, k〉 |M is a task matrix and k is a positive integer

such that �min(M) ≤ k}.

Espelage and Wanke [EW1]–[EW3], [Es] introduced the problem CFSP defined
above. They studied CFSP and variations thereof extensively; in particular, they showed
that CFSP is NP-complete. In our proof of Theorem 33 we apply Lemma 30 below, that
provides a reduction to CFSP having certain useful properties.

To show that CFSP is NP-complete, Espelage provided, in a rather involved 17 pages
proof (see pp. 27–44 of [Es]), a reduction g from the 3-SAT problem to CFSP, via the
intermediate problem of finding a “minimum valid block cover” of a given task matrixM.

3 We do not consider possible generalizations of the problem CFSP such as other distance functions,
variable job sequences, more than one worker, etc. We refer to Espelage’s thesis [Es] for results on such more
general problems.
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In particular, finding a minimum block cover ofM directly yields a minimum number
of machine switches. Espelage’s reduction can easily be modified to have certain useful
properties, which we state in the following lemma. The details of this modification can
be found on pp. 37–42 of [Ri]. In particular, prior to the Espelage reduction, a reduction
from the (unrestricted) satisfiability problem to 3-SAT is used that has the properties
stated as (10) and (11) below.

Lemma 30 (Espelage and Riege). There exists a polynomial-time many-one reduction
g that witnesses 3-SAT≤p

m CFSP and satisfies, for each given boolean formula ϕ, the
following properties:

1. g(ϕ) = 〈Mϕ, zϕ〉, whereMϕ is a task matrix and zϕ ∈ N is an odd number.
2. �min(Mϕ) = zϕ+uϕ , where uϕ denotes the minimum number of clauses of ϕ not

satisfied under assignment t , where the minimum is taken over all assignments t
of ϕ. Moreover, uϕ = 0 if ϕ ∈ 3-SAT, and uϕ = 1 if ϕ �∈ 3-SAT.

In particular, ϕ ∈ 3-SAT if and only if �min(Mϕ) is odd.

5.2. Completeness in the Higher Levels of the Boolean Hierarchy

We are interested in the complexity of the exact versions of CFSP.

Definition 31. For each k ≥ 1, define the exact version of the conveyor flow shop
problem by

Exact-k-CFSP =
{
〈M, Sk〉 M is a task matrix and Sk ⊆ N is a set of k

noncontiguous integers with �min(M) ∈ Sk

}
.

Since CFSP is in NP, the upper bound of the complexity of Exact-k-CFSP stated
in Fact 32 follows immediately. Theorem 33 proves a matching lower bound.

Fact 32. For each k ≥ 1, Exact-k-CFSP is in BH2k(NP).

Theorem 33. For each k ≥ 1, Exact-k-CFSP is BH2k(NP)-complete.

Proof. By Fact 32, Exact-k-CFSP is contained in BH2k(NP) for each k. To prove
BH2k(NP)-hardness of Exact-k-CFSP, we again apply Lemma 4, with some fixed NP-
complete problem A and with Exact-k-CFSP being problem B from this lemma. The
reduction f satisfying (1) from Lemma 4 is defined by using two polynomial-time
many-one reductions, g and h.

We now define the reductions g and h. Fix the NP-complete problem A. Let
x1, x2, . . . , x2k be strings in �∗ satisfying that cA(x1) ≥ cA(x2) ≥ · · · ≥ cA(x2k), where
cA denotes the characteristic function of A, i.e., cA(x) = 1 if x ∈ A, and cA(x) = 0 if
x �∈ A. Wagner [Wa1] observed that the standard reduction (see [GJ]) from the (unre-
stricted) satisfiability problem to 3-SAT can be easily modified to yield a reduction h
from A to 3-SAT (via the intermediate satisfiability problem) such that, for each x ∈ �∗,
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the boolean formula ϕ = h(x) satisfies the following properties:

x ∈ A �⇒ sϕ = mϕ, (10)

x �∈ A �⇒ sϕ = mϕ − 1, (11)

where sϕ = maxt {� | � clauses of ϕ are satisfied under assignment t}, and mϕ denotes
the number of clauses of ϕ. Moreover, mϕ is always odd.

Let ϕ1, ϕ2, . . . , ϕ2k be the boolean formulas after applying reduction h to each
given xi ∈ �∗, i.e., ϕi = h(xi ) for each i . For i ∈ {1, 2, . . . , 2k}, let mi = mϕi be
the number of clauses in ϕi , and let si = sϕi denote the maximum number of satisfiable
clauses ofϕi , where the maximum is taken over all assignments ofϕi . For each i , apply the
Lemma 30 reduction g from 3-SAT to CFSP to obtain 2k pairs 〈Mi , zi〉 = g(ϕi ), where
eachMi =Mϕi is a task matrix and each zi = zϕi is the odd number corresponding to
ϕi according to Lemma 30. Use these 2k task matrices to form a new task matrix:

M =



M1 0 · · · 0

0 M2
. . .

...
...

. . .
. . . 0

0 · · · 0 M2k


 .

Every task of some matrix Mi , where 1 ≤ i ≤ 2k, can be processed only if all
tasks of the matricesMj with j < i have already been processed; see [Es] and [Ri] for
arguments as to why this is true. This implies that

�min(M) =
2k∑

i=1

�min(Mi ).

Let z =∑2k
i=1 zi ; note that z is even. Define the set Sk = {z+1, z+3, . . . , z+2k−1}, and

define the reduction f by f (x1, x2, . . . , x2k) = 〈M, Sk〉. Clearly, f is polynomial-time
computable.

Let ui = uϕi = mint {� |� clauses of ϕi are not satisfied under assignment t}. Equa-
tions (10) and (11) then imply that for each i ,

ui = mi − si =
{

0 if xi ∈ A,

1 if xi �∈ A.

Recall that, by Lemma 30, we have �min(Mi ) = zi + ui . Hence,

‖{i | xi ∈ A}‖ is odd

⇔ (∃i : 1 ≤ i ≤ k)[x1, . . . , x2i−1 ∈ A and x2i , . . . , x2k �∈ A]

⇔ (∃i : 1 ≤ i ≤ k)[s1 = m1, . . . , s2i−1 = m2i−1 and

s2i = m2i − 1, . . . , s2k = m2k − 1]
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⇔ (∃i : 1 ≤ i ≤ k)[�min(M1) = z1, . . . , �min(M2i−1) = z2i−1 and

�min(M2i ) = z2i + 1, . . . , �min(M2k) = z2k + 1]

⇔ (∃i : 1 ≤ i ≤ k)

[
�min(M) =

2k∑
j=1

�min(Mj )

=
(

2k∑
j=1

zj

)
+ 2k − 2i + 1

]

⇔ �min(M) ∈ Sk = {z + 1, z + 3, . . . , z + 2k − 1}
⇔ f (x1, x2, . . . , x2k) = 〈M, Sk〉 ∈ Exact-k-CFSP.

Thus, f satisfies (1). By Lemma 4, Exact-k-CFSP is BH2k(NP)-complete.

For the special case of k = 1, Theorem 33 gives the following corollary.

Corollary 34. Exact-1-CFSP is DP-complete.

6. Conclusions and Open Questions

In this paper we have shown that the exact versions of the domatic number problem
and of the conveyor flow shop problem are complete for the levels of the boolean hi-
erarchy over NP. Our main results are proven in Section 4 in which we have studied
the exact versions of generalized dominating set problems. Based on Heggernes and
Telle’s uniform approach to define graph problems by partitioning the vertex set of a
graph into generalized dominating sets [HT], we have considered problems of the form
Exact-(k, σ, ρ)-Partition, where the parameters σ and ρ specify the number of
neighbors that are allowed for each vertex in the partition. We obtained DP-completeness
results for a number of such problems. These results are summarized in Table 2 in Sec-
tion 4.1.

In particular, the minimization problems Exact-(5, {0, 1},N)-Partition and
Exact-(5, {1},N)-Partition are both DP-complete, and so are the maximization
problems Exact-(3,N+,N+)-Partition and Exact-(5,N,N+)-Partition. Since
Exact-(i,N,N+)-Partition equals Exact-i-DNP, the latter result says that, for each
given integer i ≥ 5, it is DP-complete to determine whether or not δ(G) = i for a given
graph G. In contrast, Exact-2-DNP is coNP-complete, and thus this problem cannot
be DP-complete unless the boolean hierarchy collapses. For i ∈ {3, 4}, the question of
whether or not the problems Exact-i-DNP are DP-complete remains an interesting open
problem.

The same question arises for the other problems studied: It is open whether or not
the value of k = 3 for σ = ρ = N+ and the value of k = 5 in the other cases is optimal
in the results stated above. We were only able to show these problems NP-complete or
coNP-complete for the value of k = 1 if σ = ρ = N

+, and for the value of k = 2 in
the other cases, thus leaving a gap between DP-completeness and membership in NP
or coNP.
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Another interesting open question is whether one can obtain similar results for the
minimization problems Exact-(k, σ, {0, 1})-Partition for σ ∈ {{0}, {0, 1}, {1}}. It
appears that the constructions that we used in proving Theorems 13, 16, 21, and 24 do
not work here.

As mentioned in the Introduction and in Section 4, the corresponding gap for the
exact chromatic number problem was recently closed [Ro]. The reduction in [Ro] uses
both the standard reduction from 3-SAT to 3-Colorability (see [GJ]) and a very
clever reduction found by Guruswami and Khanna [GK]. The decisive property of the
Guruswami–Khanna reduction is that it maps each satisfiable formula ϕ to a graph G
with χ(G) = 3, and it maps each unsatisfiable formula ϕ to a graph G with χ(G) = 5.
That is, the graphs they construct are never 4-colorable. To close the above-mentioned
gap for the exact domatic number problem, one would have to find a reduction from some
NP-complete problem to DNPwith a similarly strong property: the reduction would have
to yield graphs that never have a domatic number of three.

In Sections 4.4 and 4.5, the DP-completeness results of Sections 4.2 and 4.3 are
lifted to complexity classes widely believed to be more powerful than DP. In Section 4.4
Theorem 26 generalizes Theorem 13, which states thatExact-5-DNP is DP-complete, by
showing that certain exact domatic number problems are complete in the higher levels of
the boolean hierarchy over NP. The open questions raised above for, e.g., Exact-i-DNP
with i ∈ {3, 4} apply to Theorem 26 as well, which is not optimal either. Section 4.5
proves the variants DNP-Odd, DNP-Equ, and DNP-Geq of the domatic number problem
PNP
‖ -complete.

In Section 5 we studied the exact conveyor flow shop problem using similar tech-
niques. We proved thatExact-1-CFSP is DP-complete andExact-k-CFSP is BH2k(NP)-
complete. Note that in defining these problems, we do not specify a fixed set Sk with k
fixed values as problem parameters; see Definition 31. Rather, only the cardinality k of
such sets is given as a parameter, and Sk is part of the problem instance ofExact-k-CFSP.
The reason is that the actual values of Sk depend on the input of the reduction f defined
in the proof of Theorem 33. In particular, the number zϕ from Lemma 30, which is used
to define the number z = ∑2k

i=1 zi in the proof of Theorem 33, has the following form
(see [Es] and [Ri]):

zϕ = 28nK + 27nK + 8nU + 90mt + 99m,

where t is the number of variables and m is the number of clauses of the given boolean
formula ϕ, and nK , nK , and nU denote respectively the number of “coupling, inverting
coupling, and interrupting elements” of the “minimum valid block cover” constructed
in the Espelage reduction [Es] from 3-SAT to CFSP. It would be interesting to know
whether one can obtain BH2k(NP)-completeness of Exact-k-CFSP even if a set Sk of k
fixed values is specified a priori.
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