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Abstract

Let M; be a given set ok integers. DefineExact - M- Col or abi | i ty to be the problem of determining whether
or not x(G), the chromatic number of a given gragh equals one of th& elements of the seM; exactly. In 1987,
Wagner [Theoret. Comput. Sci. 51 (1987) 53—-80] proved Exatct - M;- Col or abi | i ty is BHo, (NP)-complete, where
M ={6k + 1,6k +3,...,8k — 1} and BH; (NP) is the Zth level of the Boolean hierarchy over NP. In particular, fot 1,
it is DP-complete to determine whether or naotG) = 7, where DP= BH>(NP). Wagner raised the question of how small
the numbers in &-element sefM; can be chosen such thBkact - M;- Col or abi | i ty still is BHy, (NP)-complete. In
particular, fork = 1, he asked if it is DP-complete to determine whether org(@t) = 4.

In this note, we solve Wagner's question and prove the optimal result: Forkeach Exact - M- Col orability is
BHo (NP)-complete forM;, = {3k + 1,3k + 3, ..., 5k — 1}. In particular, fork = 1, we determine the precise threshold of
the parameter € {4, 5, 6, 7} for which the problenExact - {r}- Col or abi | i t y jumps from NP to DP-completeness: It is
DP-complete to determine whether or naiG) = 4, yetExact - {3}- Col orabi | i t y isin NP.

00 2003 Elsevier Science B.V. All rights reserved.
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1. Exact colorability and the Boolean hierarchy troduced DP, the class of differences of two NP prob-
over NP lems. They showed that DP contains various interest-
ing types of problems, includingniqueness problems,

To classify the complexity of problems known to be  critical graph problemsandexact optimization prob-
NP-hard or coNP-hard, but seemingly not contained lems For example, Cai and Meyer [7] proved the DP-
in NPU coNP, Papadimitripu and Yannakakis [16] in- completeness ofd ni mal - 3- Uncol orabi lity,

a critical graph problem that asks whether a given
" O This work was supported in part by grant NSF-INT- graphis not 3-colorable, but deleting any of its vertices
9815095/DAAD-315-PPP-gii-ab and by a Heisenberg Fellowship of Makes it 3-colorable. A graph is said to beolorable
the Deutsche Forschungsgemeinschaft. The results of this paper ap-if its vertices can be colored using no more thazol-
pef_“ ri:;lp(f:ec:L:}‘;?:xefog:‘;f;giﬁ??g;gsu‘l:fgca‘;ég';g)ef' ors such that no two adjacent vertices receive the same
\r/‘viilgh was held in conjunction with the 1$th IFIP World Compljter color. Thechromatlc number of a grapl¥, denOt_ed
Congress in Montréal, Québec, Canada. x(G), is defined to be the smallektsuch thatG is

E-mail addressrothe@cs.uni-duesseldorf.de (J. Rothe). k-colorable.
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Generalizing DP, Cai et al. [3,4] defined and studied
the Boolean hierarchy over NP. Their papers initiated

If there exists a polynomial-time computable func-
tion f such that, for all stringscq, x2,...,x, € X*

an intensive work and many papers on the Boolean satisfying(Vj: 1< j < 2k)[xj;1€ A= x; € A], it
hierarchy; e.g., [20,15,13,21,2,5,1,6,12,17] to name holds that

just a few.

To define the Boolean hierarchy,
bols A and v, respectively, to denote thmmplex in-
tersectionand thecomplex uniorof set classes. That
is, for classe€ andD of sets, define
CAD={ANB|AeCandBeD};

CvD={AUB|AeCandB eDj}.

Definition 1 (Cai et al. [3]). TheBoolean hierarchy
overNP is inductively defined as follows:

BH1(NP) = NP,

BH2(NP) = NP A coNP,

BH; (NP) = BH;_2(NP) v BH2(NP)
and

BH(NP) = | ] BH((NP).
k>1

fork >3,

Equivalent definitions in terms of different Boolean
hierarchy normal forms can be found in the papers [3,
20,15]; for the Boolean hierarchy over arbitrary set
rings, we refer to the early work by Hausdorff [11].
Note that DP= BH2(NP).

we use the sym- [[{i [xi € A} isodd & f(x1,xa.....x%) € B,

(1.2)
thenB is BHo (NP)-hard.

For fixedk > 1, let M, = {6k + 1,6k + 3, ...,
8k — 1}, and define the problem

Exact- My-Col orability
={G | G is a graph withx (G) € M, }.

In particular, Wagner applied Lemma 2 to prove that,
for eachk > 1, Exact- M- Col orability is
BH2x (NP)-complete. For the special case o= 1,

it follows that Exact - {7}- Col orabi l ity is DP-
complete.

Wagner [20, p. 70] raised the question of how
small the numbers in B-element sei/;, can be cho-
sen such thaExact - M- Col orabi l ity still is
BH2x (NP)-complete. Consider the special casé ef
1.Itis easy to see th&ixact - {3}- Col orability
is in NP and, thus, cannot be DP-complete unless the
Boolean hierarchy collapses; see Proposition 3 below.
Consequently, fok = 1, Wagner’s result leaves a gap
in determining the precise thresholde {4, 5, 6, 7}
for which the problentxact - {¢}- Col orability

All hardness and completeness results in this paper jumps from NP- to DP-completeness.

are with respect to the polynomial-time many-one
reducibility, denoted bygﬁq, which is defined as
follows. For setsA andB, A gpm B if and only if there
exists a polynomial-time computable functignsuch
that for eachk € X*, x € A if and only if f(x) € B.

A set B is said to beC-hard for a complexity class
C if and only if A <}, B for eachA € C. A setB is
said to beC-complete if and only ifB is C-hard and
BeC.

In his seminal paper [20], Wagner provided suffi-
cient conditions to prove problems complete for the
levels of the Boolean hierarchy. In particular, he es-
tablished the following lemma for BiH(NP).

Lemma 2 (Wagner, see Theorem 5.1(3) of [2Q]et A
be someNP-complete problem, leB be an arbitrary
problem, and lek > 1 be fixed.

Closing this gap and solving Wagner’s question,
we show that for each > 1, Exact - M;- Col or a-
bi lity is BHy(NP)-complete forM; = {3k + 1,
3k +3,...,5k — 1}. In particular, fork =1, it is DP-
complete to determine whether or notG) = 4.

2. Solving Wagner's question

Proposition 3. Fix any k > 1, and let M; be any
set that containsgk noncontiguous positive integers
including 3. Then,Exact - M- Col orability is
in BHo;_1(NP); in particular, fork = 1, Exact - {3}-
Col orabi lityisinNP.

Hence, Exact- M- Col orability is not
BH2x (NP)-complete unless the Boolean hierarchy,
and consequently the polynomial hierarchy, collapses.
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Proof. Fix anyk > 1, and letM;, be given as above.
Note that

Exact - My-Col orability

= U Exact - {i}- Col orabi lity.
ieMy

Since for each € My,

Exact - {i}- Col orability
={G|X(G)<i}ﬁ{G|X(G)>i—l}

and since the sefG | x(G) < i} is in NP and the
set{G | x(G) > i — 1} is in coNP, each of thé — 1
setsExact - {i}- Col orabi | i t y withi e My — {3}

is in DP. HoweverExact - {3}- Col orabil ity is
even contained in NP, since it can be checked in
polynomial time whether a given graph is 2-colorable,
so{G | x(G) > 2} is in P. HenceExact - M- Col -
orabilityisinBHx_1(NP). O

To prove the main result of this paper, we apply two
known reductions from-3SAT to 3- Col or abi | i -
ty, which have certain useful properties needed to

that does not rely on the PCP theorem. Theorem 6 be-
low uses the properties of their direct transformation,
which are stated in Lemma 5.

Lemma 5 (cf. the proof of Theorem 1 of [10]).
There exists a polynomial-time computable funcfon
that <P -reduces3- SAT to 3- Col or abi | i ty and
satisfies the following two properties

9e3-SAT =  x(p(@)=3
9¢3-SAT = x(p(p)=5.

(2.3)
(2.4)

Proof. The Guruswami—Khanna reduction, calloif
is the composition of two subsequent reductions:
first a reduction from 3SAT to the independent set
problem, another standard NP-complete problem [8];
and then from the independent set problem to 3
Col or abi l'i ty. The independent set problem asks,
given graph a and an integem, whether or not the
size of a maximum independent set Gf (i.e., of a
maximum subset o&’s vertex set in which no two
vertices are adjacent) is at least

We omit presenting the details of Guruswami and

apply Lemma 2. These properties are stated in the Khanna's very sophisticated construction, which in-

following two lemmas.

The first reduction is the standard reduction from
3- SATto 3- Col or abi | i t y,whichis due to Garey,
Johnson, and Stockmeyer [9,19]. Here,SAT is
the satisfiability problem for Boolean formulas in
conjunctive normal form and with three literals per
clause, and -3Col or abi | i ty is the set of graphs
G with x(G) < 3. Both are standard NP-complete
problems [8].

Lemma 4 (Garey et al. [9,19])There exists a polyno-
mial-time computable functios that <b -reducess3-
SAT to 3-Col or abi | i t y and satisfies the following
two properties

pe3-SAT = x(o(p)
9¢3-SAT = x(a(p)

The second reduction is due to Guruswami and
Khanna [10]. Using the PCP theorem, Khanna, Linial,

and Safra [14] showed that it is NP-hard to color a
3-colorable graph with only four colors. Guruswami

=3 (2.1)
=4, (2.2)

volves tree-like structures and various types of gadgets
connecting them. Instead, we give only a rough outline
of the construction. Using the standard reduction from
3- SAT to the independent set problem [8], construct
from the given Boolean formula a graphG consist-
ing of m triangles (i.e., ofm cliques of size 3 each)
such that each triangle corresponds to some clause of
¢ and the vertices of any two distinct triangles are con-
nected by an edge if and only if they represent some
literal and its negation, respectively, in the correspond-
ing clauses.

Then, transformG to a graphH = p(¢) such
that, to each such triangle i6, there corresponds
a tree-like structure with three leaves in the graph
H. The “vertices” of the tree-like structures are basic
templates consisting of 3 grids such that the
vertices in each row and in each column of the grid
induce a 3-clique. The three vertices in the first column
of any such basic template are shared among all the
basic templates in each of the tree-like structures.
Finally, connect the leaves of any two distinct tree-like
structures by appropriate gates that will be described

and Khanna [10] gave a novel proof of the same result later on.
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Similarly, we also omit presenting the details of of which 3-coloring is used for the grids, one can
their clever proof of correctness and give only a always color one triangle vertex, say with a color
rough outline of the idea. Intuitively, it is argued that ¢ € {1, 2, 3} such thatc is different from the colors
every 4-coloring of the grapi “selects” the root of of the two grid vertices adjacent tg. Using two
each tree-like structure and that this root selection is additional colors for the other two triangle vertices
inherited downwards to the leaves. Then, the gadgetsimplies x (H) < 5, which proves Eq. (2.4). O
connecting the tree-like structures at the leaf-level

ensure that if the grapH = p(¢) is 4-colorable, then Theorem 6. For each fixedk > 1, let My = {3k + 1,
¢ is satisfiable. On the other hand, it is proventhatif 3 4 3 . 5¢ — 1}. Then,Exact - M- Col or a-

°

¢ is satisfiable, thettf is even 3-colorable. Thus, the ;| j t y is BHy (NP)-complete.
construction guarantees that an unsatisfiable formula

implies a graph with chromatic number at least fiye. Proof. Apply Lemma 2 withA being the NP-complete
In other words, the graplif has never a chromatic problem 3 SAT and B being the problenExact -
'numb'er. of exactly four, no matter whether or ot My- Col or abi | i ty, whereM; = {3k + 1, 3k + 3,
is satisfiable. 5k — 1} for fixed k

However, there is one subtle point in the Guruswa- 'I,_eto be the standérd reduction from SAT to 3-
mi—Khanna reduction that requires detailed explana- Col or abi | i ty according to Lemma 4, and lgtbe

:Igc? E?.Len’ ‘;' n_l?ﬁe'(t)z;]“éc'zlst?];lé:ja;)bpcl)'cst'gn rOfSthg'r:]_ the Guruswami—Khanna reduction from$AT to 3-
ueton | : Ve, SUTUSWaml o4 or abi | | t y according to Lemma 5.

and Khanna [10] prove that their reductiprsatisfies The join operation® on graphs is defined as

that: follows: Given two disjoint graphd = (V4, E4) and
B = (Vp, Ep), their join A & B is the graph with
vertex setVagp = V4 U Vp and edge sefE sqp =

EoaUEgU{{a,b}|ae Vs andb € Vg}. Note thatd

is an associative operation on graphs gid @ B) =

x(A) + x(B).

Let @1, @2, ..., p2x be Z given Boolean formulas
satisfyingg;11 € 3- SAT = ¢; € 3- SAT for each;
with 1 < j < 2k. Define Z graphsHi, Ho, ..., Hy
as follows. For eachwith 1 <i <k, defineHy;_1 =
p(p2i-1) and Hy; = o(¢2;). By Egs. (2.1)—(2.4), it

e ¢ € 3-SAT implies x(p(¢)) = 3, which is
Eq. (2.3), and
e ¢ ¢ 3- SAT implies x (p(¢)) = 5.

Guruswami and Khanna [10] note that the graph
H = p(¢p) they construct is always 6-colorable. How-
ever, to apply Wagner’s technique (see Lemma 2) in
the proof of Theorem 6, we need to have tha¢
3- SAT implies not only 5< x(H) < 6, but exactly

x(H) =5. : follows that:
We now argue that the Guruswami—Khanna con- :
struction even gives that the gragh is always 5- 3 if1<j <2kandy; € 3- SAT,

colorable as required. To see why, look at the reduction

in [10]. Recall that the grapl#/ consists of tree-like 4 it j=2iforsomei €{1,2,.... k}

structures whose vertices are replaced by basic tem-X (H}) = andg; ¢ 3- SAT,
plates, which are ¥ 3 grids whose rows and columns 5 ifj=2i—1forsome €{1,2,...,k}
induce 3-cliques. Thus, the basic templates can always andg; ¢ 3- SAT.
be colored with three colors, say 1, 2, and 3. In addi- (2.5)

tion, some leaves of the tree-like structures are con-
nected by leaf-level gadgets of two types, the “same For eachi with 1 <i < k, define the graplG; to
row kind” and the “different row kind”. be the disjoint union of the graphd,,_1 and Ho;.
The latter gadgets consist of two vertices connected Thus, x (G;) = maxX{x (H2i—1), x (Hz)}, for eachi
to some grids, and thus can always be colored with two with 1 < i < k. The construction of our reduction
additional colors. The leaf-level gadgets of the “same f is completed by defining (¢1, ¢2, ..., %) = G,
row kind” consist of a triangle whose vertices are where the graply :EBf.‘:l G, isthe join of the graphs
adjacent to two grid vertices each. Hence, regardlessGi, G, ..., G¢. Thus,
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k k
X(G) =) x(G) =) max{x(Hai1), x (Ha)}.
i=1 i=1 (2_6)
It follows from our construction that
[{i | i € 3- SAT}] is odd
& Fi: 1<i<k)

[¢1,..., 921 € 3-SAT and
024y ..., P2k & 3- SAT]
@D 5 1<i <k

[ZI;:lx(Gj) =331 —1)+4+5(k—i)
=5k —2i +1]

&7 (G)e My={3k+1,3k+3,....5k— 1)

= flo1,902,...,0%)
=G eExact-Mi-Col orability.

Hence, Eqg. (1.1) is satisfied. By LemmaEXact -
My~ Col orabi | ity is BHy (NP)-complete. 0O

In particular, fork = 1, Theorem 6 has the follow-
ing corollary.

Corollary 7. Exact - {4}- Col orabi lity is DP-
complete.

To conclude this paper, we mention in passing that
Riege and this author [17] recently obtained similar
BH2 (NP)-completeness results for the exact versions
of the domatic number problem and the conveyor flow
shop problem.

The results of this paper appear in preliminary form
in [18].

Acknowledgements

Interesting discussions with Klaus Wagner, Venkat-

esan Guruswami, Edith and Lane Hemaspaandra,

Harald Hempel, Dieter Kratsch, Tobias Riege, and

Gerd Wechsung are gratefully acknowledged. | also
thank the anonymous IFIP-TCS 2002 and IPL referees

for their nice comments, and | thank Alan Bertossi for
his guidance through the editorial process.

11

References

[1] R. Beigel, R. Chang, M. Ogiwara, A relationship between
difference hierarchies and relativized polynomial hierarchies,
Math. Systems Theory 26 (3) (1993) 293-310.

[2] R. Beigel, Bounded queries to SAT and the Boolean hierarchy,
Theoret. Comput. Sci. 84 (2) (1991) 199-223.

[3] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Se-
welson, K. Wagner, G. Wechsung, The Boolean hierarchy I:
Structural properties, SIAM J. Comput. 17 (6) (1988) 1232—
1252.

[4] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Se-
welson, K. Wagner, G. Wechsung, The Boolean hierarchy II:
Applications, SIAM J. Comput. 18 (1) (1989) 95-111.

[5] R. Chang, On the structure of NP computations under Boolean
operators, PhD thesis, Cornell University, Ithaca, NY, 1991.

[6] R. Chang, J. Kadin, The Boolean hierarchy and the polynomial
hierarchy: A closer connection, SIAM J. Comput. 25 (2) (1996)
340-354.

[7] J. Cai, G. Meyer, Graph minimal uncolorability isPEcOm-
plete, SIAM J. Comput. 16 (2) (1987) 259-277.

[8] M. Garey, D. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Com-
pany, New York, 1979.

[9] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-
complete graph problems, Theoret. Comput. Sci. 1 (1976)
237-267.

[10] V. Guruswami, S. Khanna, On the hardness of 4-coloring a
3-colorable graph, in: Proceedings of the 15th Annual IEEE
Conference on Computational Complexity, IEEE Computer
Society Press, May 2000, pp. 188-197.

[11] F. Hausdorff, Grundziige der Mengenlehre, Walter de Gruyter,
Berlin, 1914.

[12] L. Hemaspaandra, J. Rothe, Unambiguous computation:
Boolean hierarchies and sparse Turing-complete sets, SIAM
J. Comput. 26 (3) (1997) 634-653.

[13] J. Kadin, The polynomial time hierarchy collapses if the
Boolean hierarchy collapses, SIAM J. Comput. 17 (6) (1988)
1263-1282; Erratum, SIAM J. Comput. 20 (2) (1991) 404.

[14] S. Khanna, N. Linial, S. Safra, On the hardness of approximat-
ing the chromatic number, Combinatorica 20 (3) (2000) 393—
415.

[15] J. Kdbler, U. Schoning, K. Wagner, The difference and truth-
table hierarchies for NP, RAIRO Inform. Théor. Appl. 21
(1987) 419-435.

[16] C. Papadimitriou, M. Yannakakis, The complexity of facets
(and some facets of complexity), J. Comput. System Sci. 28 (2)
(1984) 244-259.

[17] T. Riege, J. Rothe, Complexity of the exact domatic number
problem and of the exact conveyor flow shop problem, Tech-
nical Report ¢s.CC/0212016, Computing Research Reposi-
tory (CoRR), December 2002, 14 pp.; Available on-line at
http://xxx.lanl.gov/abs/cs.CC/0212016.

[18] J. Rothe, H. Spakowski, J. Vogel, Exact complexity of Exact-
Four-Colorability and of the winner problem for Young elec-
tions, in: R. Baeza-Yates, U. Montanari, N. Santoro (Eds.),
Foundations of Information Technology in the Era of Network



12 J. Rothe / Information Processing Letters 87 (2003) 7-12

and Mobile Computing, Proceedings of the 2nd IFIP Interna- [20] K. Wagner, More complicated questions about maxima and

tional Conference on Theoretical Computer Science, Stream 1 minima, and some closures of NP, Theoret. Comput. Sci. 51

of the 17th IFIP World Computer Congress, Kluwer Academic (1987) 53-80.

Publishers, August 2002, pp. 310-322. [21] K. Wagner, Bounded query classes, SIAM J. Comput. 19 (5)
[19] L. Stockmeyer, Planar 3-colorability is NP-complete, SIGACT (1990) 833-846.

News 5 (3) (1973) 19-25.



