Theory Comput. Systen8b, 81-93 (2002)
DOI 10.1007500224-001-1048-9 Theory of
Computing

Systems

© 2002 Springer-Verlag
New York Inc.

Computing Complete Graph Isomorphisms and
Hamiltonian Cycles from Partial Ones*

A. GroRet! J. Rothe? and G. Wechsurlg

Linstitut fir Informatik, Friedrich-Schiller-Universit Jena,
07740 Jena, Germany
{grosse, wechsun@informatik.uni-jena.de

2Mathematisches Institut, Heinrich-Heine-Univeasibiisseldorf,
40225 Disseldorf, Germany
rothe@cs.uni-duesseldorf.de

Abstract. We prove that computing a single pair of vertices that are mapped onto
each other by an isomorphism between two isomorphic graphs is as hard as
computinge itself. This result optimally improves upon a result oélGHalevi,
Lipton, and Petrank. We establish a similar, albeit slightly weaker, result about
computing complete Hamiltonian cycles of a graph from partial Hamiltonian cycles.

1. Introduction

Two of the most central and well-studied problems in NP are the graph isomorphism
problem and the Hamiltonian cycle problem. The latter problem is one of the standard
NP-complete problems [Ka], [GJ]. In contrast, the graph isomorphism problem currently
is the most prominent candidate of a problem that is neither in P nor NP-complete. On
the one hand, there is no efficient algorithm known for solving this problem, despite
a considerable effort in the past to design such algorithms. On the other hand, due to
its well-known lowness properties [Sc3], [KST1], the graph isomorphism problem is
very unlikely to be NP-complete. For more information about the graph isomorphism
problem, we refer to the book bydbler et al. [KST2].

* This work was supported in part by Grant NSF-INT-9815095/DAAD-315-P@faky The second
author was supported in part by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft. A prelim-
inary version of this paper appears as part of [GRW] inRheceedings of the Seventh Italian Conference on
Theoretical Computer Scienc2001.

82 A. Grol3e, J. Rothe, and G. Wechsung

Computational complexity theory and, in particular, the theory of NP-completeness
[GJ] traditionally is concerned with the decision versions of problems. For practical
purposes, however, to find or to construct a solution of a given NP problem is much more
important than merely knowing whether or not a solution exists. For example, computing
an isomorphism between two isomorphic graphs (that is, solving the search version of
the graph isomorphism problem) is much more important for most applications than
merely knowing that the graphs are isomorphic. Therefore, much effort has been made
in the past to relate the complexity of solving the search problem to the complexity of
solving the corresponding decision problem. This property is known as “search reducing
to decision,” see, e.g., [HNOS] and the references cited therein. The decisive property
enabling search to reduce to decision for NP problems such as the graph isomorphism
problem is their self-reducibility.

The present paper builds on the recent work af € al. [GHLP] who studied a
property that might be dubbed “complete search reducing to partial search.” They showed
for various NP problemg\ that, given an inpuk € A, computing a small fraction of a
solution forx is no easier than computing a complete solutiorkidfor example, given
two isomorphic graphs, computing roughly logarithmically many pairs of vertices that
are mapped onto each other by a complete isomorphibetween the graphs is as hard
as computing itself.

As Gal et al. note, their results have two possible interpretations. Positively speak-
ing, their results say that to solve the complete search problem efficiently it is enough to
provide an efficient algorithm for computing only a small part of a solution. Negatively
speaking, their results say that constructing even a small part of a solution to instances
of hard problems also appears to be a very difficult task. AseBal. [GHLP] further
note, their work also has consequences with regard to fault-tolerant computing (in par-
ticular, for recovering the complete problem solution when parts of it are lost during
transmission), and for constructing robust proofs of membership.

The present paper makes the following contributions. Firstly, we improve the above-
mentioned result of &’et al. [GHLP] by showing that computing even a single pair of
vertices that are mapped onto each other by a complete isomorptistween two iso-
morphic graphs is as hard as compuignigself. This result is a considerable strengthen-
ing of the previous result and an optimal improvement. Interestingly, the self-reducibility
of the graph isomorphism problem is the key property that makes our stronger result pos-
sible. Secondly, we obtain a similar, albeit somewhat weaker, result about computing
complete Hamiltonian cycles of a given graph from accessing partial information about
the graph’s Hamiltonian cycles.

2. Computing Complete Graph Isomorphisms from Partial Ones

2.1. Main Result

Gal et al. [GHLP] prove the following result. Suppose there exists a function oracle
f that, given any two isomorphic graphs with vertices each, outputs a part of an
isomorphism between the graphs consisting of at l€ast ¢) logm vertices for some

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 83

constante > 0. Then, using the oraclé, one can compute a complete isomorphism
between any two isomorphic graphs in polynomial time.

We improve their result by showing the same consequence under the weakest as-
sumption possible: assuming that we are given a function oracle that praritjesne
vertex pairbelonging to an isomorphism between two given isomorphic graphs, one can
use this oracle to compute complete isomorphisms between two isomorphic graphs in
polynomial time. Thus, our improvement of the previous result by & al. [GHLP] is
optimal.

Definition 2.1. Let G and H be undirected and simple graphs, i.e., graphs with no
reflexive and multiple edges.

e Thevertex set of Gs denoted by (G), and theedge set of Gs denoted byE (G).
e An isomorphism between G and #d a bijective mapping from V(G) onto
V (H) such that, for alk, y € V(G),

X, Y1eEG) <+ {pX), eV} e E).
o LetISO(G, H) denote the set of isomorphisms betwéeandH .

We now state our main result.

Theorem 2.2. Suppose there exists a function oracle f tigaten any two isomorphic
graphsG andH, outputs two vertices x V (G) and y e V (H) with$(x) = v, for some
isomorphismp from ISO(G, H). Then there is a recursive procedure g thgiven any
two isomorphic graphs G and Hises the oracle f to construct a complete isomorphism
@ € I1ISO(G, H) in polynomial time

2.2. Discussion of the Model

As stated above, our main result optimally improves upon the above-mentioned result of
Gél et al. [GHLPI]. Itis thus clear that, in stating Theorem 2.2, we have to use precisely
the same model of accessing partial information via a function oracle that is used in
[GHLP]. Two remarks on that model are in order. The first remark concerns the way the
function oracle is modeled.dbét al. write in [GHLP]:

“We study the complexity of the graph isomorphism problem assuming that we
have access to an oracle that provides us with a partial isomorphism on a subset
of certain size of the vertices for arbitrary isomorphic pairs of graphs. We stress
that the partial information which is provided by the oracle must be part of a
complete isomorphism between the graghandH .”

As noted by a referee, both a preliminary version of the present paper (see
also [GRW]) and the paper byabet al. [GHLP] are concerned with a certain kind
of “promise oracle” that gives reliable information only in the case of an isomorphic pair
of input graphs. To remove the “promise” from the oracle and to be also explicit about
the case of two nonisomorphic input graphs, we follow this referee’s suggestion to define
by convention that in that case the function oracle simply outputs a pair of vertices, one
from each given graph, without revealing that the graphs are nonisomorphic. Note that,

84 A. Grol3e, J. Rothe, and G. Wechsung

even though the “promise” is now explicitly removed from the oracle, it is enough to
state Theorem 2.2 for the case of two isomorphic input graphs. One may do so, since
after having constructed, according to Theorem 2.2, a potential isomorpligtween

the given graph& and H, one can easily deterministically check it to verify that
indeed is an isomorphism betwe&nandH.

The second remark concerns the way in which access to the function oracle is
modeled. Both the algorithm presented in Theorem 3 of [GHLP] and the recursive
procedureg from Theorem 2.2 may access the oracle a polynomial number of times.
As noted by a referee, it may be questioned whether this model is realistic in the setting
of fault-tolerant computing, where the objective is to recover a complete solution of a
hard problem, parts of which are lost during transmission. In this particular scenario,
it would indeed appear more realistic to require that the oracle can be accessed only
once. Unfortunately, neither the work byaEt al. [GHLP] nor our work yields results
in this very restricted model when the oracle can be asked only once. On the other
hand, there are other good motivations as well for which it does make sense to allow a
polynomial number of oracle queries. For example, this comment applies to the question
of whether the complete search problem reduces to partial search, and it applies to the
task of constructing robust proofs of membership (see [GHLP]).

Analogous comments about the model used apply to Section 3 in which similar
results on the Hamiltonian cycle problem are established.

2.3. Informal Description of the Proof of the Main Result

Before proving Theorem 2.2, we give an informal description of the proof and we explain
the main difference between our proof and the proof af & al. [GHLP]. Crucially, to

make their recursive procedure terminate, they ensure in their construction that the (pairs
of) graphs they construct are of strictly decreasing size in each loop of the procedure. In
contrast, for our algorithm this strong requirement is not necessary to make the procedure
terminate.

We informally explain why. Our algorithm is inspired by the known self-reducibility
algorithm for the graph isomorphism problem; see, e.g., [KST2]. The notion of self-
reducibility has been thoroughly studied by many authors; we refer the reader to the
work of Schnorr [Sc1], [Sc2], Meyer and Paterson [MP], Selman [Se], and Ko [Ko], and
to the excellent survey by Joseph and Young [JY] for an overview and for pointers to the
literature.

Informally speaking, a self-reduction for a problexis a computational procedure
for solving A, where the seA itself may be accessed as an oracle. To prevent this notion
from being trivialized, one requires thatcannot be queried about the given input itself;
usually, only queries about strings that are “smaller” than the input string are allowed.
When formally defining what precisely is meant by “smaller,” most self-reducibility
notions—including those studied by the above-mentioned researchers—employ the use-
ful concepts of “polynomially well-founded” and “length-bounded” partial orders, rather
than being based simply on the lengths of strings. This approach is useful in order to
“obtain full generality and to preserve the concept under polynomially computable iso-
morphisms” [JY, p. 84], see also [MP] and [Se]. That means that the strings queried
in a self-reduction may bkrger in lengththan the input strings as long as they are

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 85

predecessors in a polynomially well-founded and length-bounded partial.dtéethis
key property that makes our algorithm terminate without having to ensure in the con-
struction that the (pairs of) graphs constructed are of strictly decreasing size in each loop.
Hereis anintuitive description of how our algorithm works. GeandH be the given
isomorphic graphs. The function oracle will be invoked in each loop of the procedure
to yield any one pair of vertices that are mapped onto each other by some isomorphism
between the graphs as yet constructed. However, if we were simply deleting this vertex
pair, we would obtain new grap!s andH such that IS@G, H) might contain some
isomorphism not compatible with ISG, H), which means it cannot be extended to an
isomorphism in ISQG, H). That is why our algorithm will attach cliques of appropriate
sizesto each vertex to be deleted, and the deletion of this vertex, and of the clique attached
to it, will be delayed until some subsequent loop of the procedure. That is, the (pairs of)
graphs we construct may increase in size in some of the loops, and yet the procedure is
guaranteed to terminate in polynomial time.

2.4. Proof of the Main Result

We now turn to the formal proof.

Proof of Theoren?.2. LetG and H be two given isomorphic graphs withvertices
each. Letf be a function oracle as in the theorem. We describe the recursive procedure
g that computes an isomorphisme 1ISO(G, H). Below, we use variable§ andH to
denote (encodings of) graphs obtained fr@mand H according tog, and we refer to
the vertices of5 andH as theold vertices and to the vertices 6f — G andH — H as
thenewvertices.

On input(G, H), the algorithmg executes the following steps:

1. LetG = GandH = H, and sei ton = ||V(G)||. Letg C V(G) x V(H)
be a set variable that, eventually, gives the isomorphism bet@eerdH to be
constructed. Initially, sep to the empty set.

2. Queryf aboutthe pai(G, H). Let(X, y) be the vertex pair returned G, H),
wherex € V(G) andy € V(H) and¢(x) = y for some isomorphisnp e
ISO(G, H).

3. Consider the following two cases:

Case3.1:x € V(G) is an old vertex We distinguish the following two cases:
(a) yis also an old vertex (itd).
Setyp to ¢ U {(X, ¥)}. Modify the graphs5 andH as follows.

Deletex, all new neighbors ox, and all edges incident to either of these
vertices fromG. Attach to each old neighbot € V(G) of x a copy of a
cligueC; x consisting of — 1 new vertices, each of which is connected with
X" by an edge; hence, the graph inducedMg; x) U {x’} forms ani -clique.
Make sure that all the new clique vertices are pairwise disjoint and disjoint
with (the old) graphG. Call the resulting graph (the nev.

Modify H in the same way: Deletgand all new neighbors of from H,
and extend each old neighbgre V (H) of y to a clique consisting of thie
verticesV (Ci y) U {y'}.

86 A. Grol3e, J. Rothe, and G. Wechsung

(b) yis a new vertex irH.
Let ¥ € V(H) be the unique old vertex adjacentypi.e., y is a member of
the cliqueC; y that was previously attached yoin the (j — n + 1th loop,
wheren < j < i. Note that the size of the cliqug y U {¥} equalsj. Since
@(x) =y, the old vertexx must belong to the cliqug; x U {x} of sizej and,
thus, cannot have any old neighborg&init follows thaty is also not adjacent
to any old vertex in the current grapﬁm That is, both the cliqu€; x U {x}
and the cliqueC; y U {y} are connecting components of their graﬁhand
H, respectively.

Setyp to ¢ U {(X, §)}. Modify the graphs5 andH by deleting the cliques

CJ"X U {x} ande,g, U {Y}

Seti toi + 1.

Case3.2:x € V(G) is a new vertex irG. It follows thatx is a member of a
cliqueC; %, wheren < j < i, that was previously attached to some old vertex
X € V(G) in the (j — n+ 1)th loop. Also, by constructiorx is the only old
vertex adjacent ta. Similarly, it holds thaty is a member of a cliqu€; y U {¥)}
in H with a uniquely determined old vertgike V (H).
If y =¥, then this case reduces to Case 3.1(a), witleing replaced by.
If y # ¥, theng(x) = y implies thatg(X) = ¥ and, thus, thak andy have
the same number of old neighbors. Hence, this case also reduces to Case 3.1(a),
with x being replaced by andy being replaced by.

4. If there are no vertices left i6 and H, outpute, which gives a complete
isomorphism betweeG andH. Otherwise, go to Step 2.

As alluded to in the above informal description of the algorithm, the intuition behind
introducing cliques of increasing sizes in the construction is to keep the isomorphisms
¢ € ISO(G, H) compatible withy € 1ISO(G, H) when vertices fronG and H are
deleted. That is, we want to preclude the case that deletiagv (G) andy e V(H)
results in reduced grapi@ andH such that there is somg € 1ISO(G, H)—and our
oraclef might pick some vertex pair corresponding to su¢h-athat cannot be extended
top € ISO(G, H).

The following example illustrates this intuition and shows how the algorithm works.

Example 2.3. Figure 1 gives an example of a pair of isomorphic gra@hendH with
ISO(G, H) = {¢1, 92}, where

(12 3 4 and o (L 2 3 4
1=\1 5 4 3 2 $2=\5 1 4 3 2"

Suppose that the function oradlewhen queried about the pdiB, H), returns, e.g., the
vertex pair(5, 2). If we were simply deleting vertex 5 fro@ and vertex 2 fronH, then
we would obtain graph€ andH such that ISOG, H) contains six isomorphisms, only
two of which are compatible with the paib, 2); see Figure 2. However, thein when
queried about the pa'(@, ﬁ), might pick, e.g., the vertex paid, 5), which belongs
neither top; nor top,.

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 87

2 ¢ 1 1 2 1
3 . I 2 3 .
H: ! . 3 ~ Gi: *4 Hy: 3 4

K 2
+~l ——o G: ‘ H: $ /AN o ;
L, i oy WY

1

G

we

C&?"'—.N

Fig. 1. Two graphsG Fig. 2. Two graphs(E and Fig. 3. Two graphsG;
andH with ISO(G, H) = H for which ISQG, H) and H; obtained fromG

{01, @2} contains isomorphisms notandH according tay when
compatible with the pair f (G, H) returns(5, 2).
5, 2).

To preclude cases like this, our algorithm attaches cliques of size 5 to vertex 4 in
G and to vertex 3 irH; see Figure 3. Old vertices are represented by solid circles and
new vertices by empty circles. Note that eack 1SO(G;, H;) is compatible with the
vertex pair(5, 2) from ¢y, ¢, € ISO(G, H).

Figures 3—6 show hog, on input(G, H), continues to work for a specific sequence
of oracle answers fronfi. In Figure 6 the only old vertex left i, is vertex 4, and the
only old vertex left inH,4 is vertex 3. Hence, whichever vertex pdirwhen queried
about(Gy4, Hy) picks, g maps vertex 4 inG4 to vertex 3 inHg, which completes the
isomorphism

(12 3 4
$2=\5 1 4 3 2

thatis in ISQG, H). Finally, bothG4 andH,4 are deleted, and the algorithm terminates.

To prove the correctness of the algorithm, we argue that

(a) each pai(é, H) constructed in any loop @ is a pair of isomorphic graphs—
hence,f can legally be called in each loop gf and
(b) the mappinge computed byg on input(G, H) is in ISO(G, H).

Proof of (a). This assertion follows immediately from the construction and the assump-
tion thatG andH are isomorphic.

G

B!

: ! 4 Hy: 3 4?
*\2 g \Zgl ’

Fig. 4. Two graphsG, Fig. 5. Two graphsGs Fig. 6. Two graphsGy

and H, that result from and Hs that result from and H; that result from
f(G1, H) = (L, 5). f(Gz, Hp) = (2, D). f(Gs, H3) = (u, v).

88 A. Grol3e, J. Rothe, and G. Wechsung

Proof of (b). The first call tof yields a valid initial segmenx;, y1) of an isomorphism
betweenG andH, sincef is queried about the unmodified grapBsandH.

Let g = {(X1, Y1), (X2, ¥2), ..., (X, Vi)} be the initial segment ap that consists
of i vertex pairs for some, 1 <i < n, where(x;, y;) is the pair added in thigh loop
of g. LetG; andH; be the graphs constructed fragnandH when loopi is entered; for
exampleG; = G andH; = H. Fixsome with 1 < i < n. We show that the extension
@i of ¢i_1 (obtained by adding the paik;, y;) in theith loop ofg) is compatible with
¢i—1. That s, for eaclix;, y;) € ¢i_1, it holds that

{Xi, X} e E(G) ifand only if {yi, yj} € E(H).

Assume{x;, xj} € E(G). Inloop j < i, all neighbors of;, includingx;, and all
neighbors ofy; were extended to a clique of sire+ j — 1. Note that, in each loop
of g, the clique sizes are increased by one, each clique contains exactly one old vertex,
and any two cliques i; (respectively, inH;) can overlap only by having their unique
old vertex in common. It follows that any isomorphism betw&rand H; must map
cligues of sizen+ j — 1in G; onto cliques of siza + j — 1 in H;. Sincey; is chosen in
loopi of g, it follows from our construction that the cliq@®j_1 x, in G; was mapped
onto the cliqueC,1j_1y in Hi. Hencey; is a neighbor ofy; in H, i.e.,{yi, yj} € E(H).

The converse implication(y;, y;} € E(H) = {Xi, X;} € E(G)) follows by a
symmetric argument.

Finally, we estimate the time complexity of the algoritignSince, in each loop of
0, a pair of old vertices fronv (G) x V(H) is deleted from the graphs and is added to
the isomorphismp € ISO(G, H), the algorithm terminates afterloops. Within each
loop, g makes one oracle call tb, updates, and modifies the current grapﬁsand H
by deleting certain vertices and by adding at m@at-21) cliques of size at most2— 1.
Hence,g runs in cubic time. O

3. Computing Complete Hamiltonian Cycles from Partial Ones

3.1. Informal Description of the Result and Its Proof

We now turn to the problem of computing complete Hamiltonian cycles in a graph from
partial ones. Our result here is similar to the one presented for the graph isomorphism
problem in Section 2, although it is technically slightly weaker. The remarks about the
model of oracle access that we made in Section 2.2 apply here as well. Our construction
for the Hamiltonian cycle problem is easier to describe when we use multigraphs, i.e.,
graphs with reflexive and multiple edges allowed. We may do so, since for Hamiltonian
cycles it does not matter whether simple graphs or multigraphs are used. That is not
to say that the two corresponding problems are equivalent in the sense of a reduction;
rather, it refers to the simple fact that it does not matter through which one of possibly
several edges between two adjacent vertices a Hamiltonian cycle goes. Our result and
proof could equally well be given for simple graphs, but the proof would be technically
more involved and more cumbersome to describe in its technical details. Unless stated
otherwise, we also assume that all graphs are connected and, as before, are undirected.
A referee observed that in the case of directed graphs, there is an easy procedure for
obtaining Hamiltonian cycles, which in factis a particular case of the “left-right-context”

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 89

idea that we apply below to the case of undirected graphs. Following this referee’s
suggestion, we present this procedure for directed graphs here in order to motivate our
solution for the undirected case. Suppose that the oracle outputs a directe@ edge
that is part of a Hamiltonian cycle of the given graphThen deleting this edge and alll
edges going out af and all edges going inteand identifyingu andv, we obtain a new
graphH such that each Hamiltonian cyclelith can be extended to a Hamiltonian cycle
of G that contains the edge, v). Hence, the Hamiltonian cycles in the new graph
are compatible with the edge, v), and thus we may recurse to construct a complete
Hamiltonian cycle of the given graph in polynomial time.
Turning now to the case of undirected graphs, we informally describe how our
procedure works. As in the preceding section, suppose we have a function bthale
given any multigraptG that contains a Hamiltonian cycle, returns an edgat is part
of a Hamiltonian cyclee of G. We want to reduc& by deletinge and identifying the
two vertices incident t@, and then want to recursively applyto this reduced graph,
call it G. However, this approach would destroy important information abpnamely
the “left” and the “right” context ok in G. Thus, in the next recursion loop, the oracle
might return an edge contained in a Hamiltonian cyinhéé that is not compatible with
the previously chosen edgewhich means that addirepack toG does not necessarily
imply that€ can be extended to a Hamiltonian cycle®f To preclude cases like this,
we require our oracle to return only edges contained in Hamiltonian cycles that are
compatible with the left-right-context of the edges previously chosen. This additional
requirement regarding makes Theorem 3.2 somewhat weaker than Theorem 2.2.
First, we define what we mean by a left-right-context of (the edge& pfind what
we mean by Hamiltonian cycles being compatible (or consistent) with a left-right-context
of G.

Definition 3.1. LetG = (V, E) be an undirected multigraph withvertices.

e A Hamiltonian cycle of Gis a sequencéuvy, v, ..., vy) Of pairwise distinct
vertices fromV such that{v,, v1} € E and{vi, vi;1} € E for eachi with
l<i<n-1

e For any sef, let3(S) denote the power set & For anyv € V, let E(v) denote
the set of edges i& incident tov.
A left-right-context of Gis a functionz : V — P(E) x B(E) satisfying that,
for everyv € domair(rr), there exist setk (v) and R(v) such that
1. 7n(v) = (L(v), R()),
2. Lw)UR@W) € E(v),and
3. Lw)NR@w) =4a.

e We say that a Hamiltonian cycteof G is consistent with a left-right-context
of G if and only if for everyv € domair(rr), ¢ contains exactly one edge from
L (v) and exactly one edge froR(v), wherer (v) = (L(v), R(v)).

3.2. Formal Result and Proof

We now state and prove our result formally.

920 A. Grol3e, J. Rothe, and G. Wechsung

Theorem 3.2. Let G be any multigraphand letz be any left-right-context o6.
Suppose there exists a function oracle f thgiven (G,), outputs some edge e
E(G) such that some Hamiltonian cycle consistent witbontains gprovidedG has a
Hamiltonian cycle consistent with). Then there is a recursive procedure g thgitzen
any multigraph G that has a Hamiltonian cygleses the oracle f to constructa complete
Hamiltonian cycle of G in polynomial time

Proof. LetG be any multigraph witlm vertices that contains a Hamiltonian cycle. Let
f be a function oracle as in the theorem.

Inthe procedure described below, whenever we identify two vertiaeslv, deleting
the edge(s) connecting andv, we assume by convention that in the resulting graph
the vertexu = v has two name tags, namalyandv. This convention simplifies the
description of our construction and does no harm.

We now describe the procedugen inputG:

Step0. LetGg = (Vo, Eg) be the given multigrapt, and letry be the nowhere defined
function (on the domailvy). SetC to the empty set. Note th@will, eventually, contain
the complete Hamiltonian cycle & to be constructed.

Stepil<i <n-1. LetGj_; = (Vi_1, Ei_1) be the multigraph and let;_;

be the left-right-context of5;_; constructed in the previous step. Compute the edge
e = f(Gj_1, mi_1) by querying the oracle, and aédto C. Lete = {u;, v;}. Consider

the following three cases.

Casel: g N domain(wj_;) = @#. Cancelg from Gj_;, and identify the vertices;
andv;. Call the resulting grapks; = (V;, E;). Define the left-right-context;: V; —
P(Ei) x P(Ej) by domairizi) = domainz;_1) U {u;} and

mi_1(v) if v e domair(mi_1),

(Li(w), Ri(u)) if v=u,

7 (v) =

where

o Li(uy)=E_1(u)—{g}and
e R(U) ={{ui,z} | {vi.Z} e Ei_1 A Z# Ui}

Case2: ¢ Nndomain(ri_1) = {x} for some vertex x Vi_;. By our assumption that
returns only edges consistent with the given left-right-congxtust belong to exactly
one ofLi_1(x) or R_1(X). Assumex = v; andg < L;i_1(x); the other cases—such as
the case %X = u; ande € R _1(x)"—can be treated analogously.

Cancelg from G;_;, and identify the vertices; andwv;, which equals. Call the
resulting graphG; = (V;, E;). Define the left-right-context;: Vi — PB(Ej) x B(E;)
by domain(z;) = domain(z;_;) and

mi—1(v) if v#X,
(Lix), R(x)) if v=x,

i (v) =

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 91

where

o Li)={{x.z} [{ui,z} € Ei.1 A Z# v} and
e R(¥) =R_1(X).

Case3: g Ndomair(r_1) = {X, y} fortwo vertices xy € V,_ with x # y. It follows
thate = {x, y} in this case. By our assumption thatreturns only edges consistent
with the given left-right-contexg must belong to exactly one &f _1(z) or R_1(2), for
bothz = x andz = y. Assumeg € L;_1(X) N R_1(y); the other cases can be treated
analogously.

Cancelg from G;_;, and identify the verticex andy. Call the resulting graph
G; = (Vi, Ej). Define the left-right-context;: Vi — P(E;) x B(E;) by domair(r;) =
domainri_1) and

mi—1(v) if v#EXx=Yy,
(Li(y), Ri(y) if v=x=y,

i (v) =

where

e Li(y) =Li-1(y) and
e R(y)={ly.Z} | {x,Z} ¢ R_a(X¥)}.

Step n Since in each of tha — 1 previous steps two vertices have been identified and
one edge has been addedXgthe graphs,,_; constructed in the previous step contains
only one vertex, say, having possibly multiple reflexive edges. Al&bcontainan — 1
elements, and_1 is either of the form

e 1= (9, Ri-1(2)) or
o 1 = (Ln-1(2), 9),

where any edge iR,_1(2) (respectively, irn.,,_1(z)) can be used to complete the Hamil-
tonian cycle constructed so far. Thus, we may choose any one edgeRfrorte) (re-
spectively, fromL,_1(z)) and add it taC.

This concludes the description of the procedgirdlote thatg runs in polynomial time.
To prove the correctness of the algorithm, note that, for eacll, 2, ..., n — 2}, and
for each Hamiltonian cycle of G; consistent withr;, it holds that inserting the edge
g into c yields a Hamiltonian cycle 06;_1, thus ensuring consistency of the overall
construction. O

4. Conclusions and Future Work

In this paper we studied animportant property of NP problems: how to compute complete
solutions from partial solutions. We in particular studied the graph isomorphism problem

and the Hamiltonian cycle problem. We showed as Theorem 2.2 that computing even a
single pair of vertices belonging to an isomorphism between two isomorphic graphs is as

92 A. Grol3e, J. Rothe, and G. Wechsung

hard as computing a complete isomorphism between the graphs. Theorem 2.2 optimally
improves upon a result of@et al. [GHLP].

We propose to establish analogous results for NP problems other than the graph
isomorphism problem. For examplealGt al. [GHLP] investigated many more hard NP
problems, and showed that computing partial solutions for them is as hard as computing
complete solutions. However, their results are not known to be optimal, which leaves
open the possibility of improvement. Relatedly, what impact does the self-reducibility
of such problems have for reducing complete search to partial search?

We obtained as Theorem 3.2 asimilar resultabout reducing complete search to partial
search for the Hamiltonian cycle problem. However, this result appears to be slightly
weaker than Theorem 2.2, since in Theorem 3.2 we require a stronger hypothesis about
the function oracle used. Whether this stronger hypothesis in fact is necessary remains
an open question. It would be interesting to know whether, also for the Hamiltonian
cycle problem, one can prove a result as strong as Theorem 2.2. More precisely, is it
possible to prove the same conclusion as in Theorem 3.2 when we are given a function
oracle that is merely required to return any one edge of a Hamiltonian cycle of the given
graph, without requiring in addition that the edge returned belong to a Hamiltonian cycle
consistent with the edge’s left-right-context?

Acknowledgment

We are indebted to Edith and Lane A. Hemaspaandra for introducing us to this interesting topic and for
stimulating discussions and comments. We acknowledge interesting discussions about graph theory with
Haiko Muiller. We thank the anonymous ICTCS '01 referees for their helpful and insightful comments on the
paper, and we thank an anonymol@CSreferee for his or her very helpful and insightful comments and
suggestions that improved the presentation of this paper. In particular, the discussion in Section 2.2 about the
model of oracle access used was inspired by this referee’s comments, and the solution for the Hamiltonian
cycle problem for directed graphs that is given in Section 3.1 is due to this referee.

References

[GHLP] A. Gal, S. Halevi, R. Lipton, and E. Petrank. Computing from partial solutionBrdeeedings of
the 14th Annual IEEE Conference on Computational Complexygges 34-45. IEEE Computer
Society Press, Los Alamitos, CA, May 1999.
[GJ] M. GareyandD. Johnso8omputers and IntractabilityA Guide to the Theory of NP-Completeness
Freeman, San Francisco, CA, 1979.

[GRW] A. GroRe, J. Rothe, and G. Wechsung. Relating partial and complete solutions and the complexity
of computing smallest solutions. Proceedings of the Seventh Italian Conference on Theoretical
Computer Scienggpages 339-356. Lecture Notes in Computer Science #2202, Springer-Verlag,
Berlin, October 2001.

[HNOS] E. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. P-selective sets and reducing search to
decision vs. self-reducibilitydournal of Computer and System Sciené&42):194—209, 1996.
[JY] D.Joseph and P. Young. Self-reducibility: effects of internal structure on computational complexity.
In A. Selman, editorComplexity Theory Retrospectjygges 82—107. Springer-Verlag, New York,
1990.
[Ka] R. Karp. Reducibilities among combinatorial problems. In R. Miller and J. Thatcher, editons;
plexity of Computer Computationsages 85-103, 1972.

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones 93

[Ko] K. Ko. On self-reducibility and weak P-selectivityournal of Computer and System Sciences
26(2):209-221, 1983.
[KST1] J.Kébler, U. Sclohing, and J. Tan. Graph isomorphism is low for PEomputational Complexity
2:301-330, 1992.
[KST2] J. Kdbler, U. Sclohing, and J. Tan. The Graph Isomorphism Problerits Structural Complexity
Birkhauser, Basel, 1993.

[MP] A. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult?
Technical Report MIT/LCS/TM-126, MIT Laboratory for Computer Science, Cambridge, MA,
1979.

[Sc1] C. Schnorr. Optimal algorithms for self-reducible problems. In S. Michaelson and R. Milner, editors,
Proceedings of thérd International Colloquium on Automateanguagesand Programmingpages
322-337, University of Edinburgh, July 1976. Edinburgh University Press, Edinburgh.

[Sc2] C. Schnorr. On self-transformable combinatorial problems, 1979. Presented at IEEE Symposium
on Information Theory, Udine, and Symposiumbei Mathematische Optimierung, Oberwolfach.

[Sc3] U. Sctohing. Graph isomorphism s in the low hierarchgurnal of Computer and System Sciences
37:312-323, 1987.

[Se] A. Selman. Natural self-reducible se&dAM Journal on Computind. 7(5):989-996, 1988.

Received Jun&8, 2001 and in revised form Octobe29, 2001 Online publication Februarg0, 2002.

