
Algorithms and Complexity

for Fair Division, Voting,

and Peer Reviewing

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Magnus Roos

aus Mülheim a.d. Ruhr

Düsseldorf, im November 2013

Aus dem Institut für Informatik der

Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Jörg Rothe

Koreferent: Prof. Dr. Martin Mauve

Koreferent: Prof. Dr. Nicolas Maudet

Tag der mündlichen Prüfung: 20. November 2013

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne uner-

laubte Hilfe angefertigt und diese in der vorliegenden oder in ähnlicher Form noch bei

keiner anderen Institution eingereicht habe.

Teile dieser Arbeit wurden bereits auf diversen Konferenzen und Workshops vorgestellt

und wurden in deren Proceedings veröffentlicht [106, 8, 110, 94, 95, 91, 108, 90, 9, 10,

92]. Ebenfalls wurden einige Teile dieser Arbeit in Fachzeitschrift veröffentlicht [96,

93].

Außerdem wurden Teile dieser Arbeit bei einer weiteren Fachzeitschrift eingereicht [109].

Düsseldorf, 20.11.2013

Magnus Roos

III

Zusammenfassung

Computational Social Choice ist ein aufstrebendes Gebiet in der Schnittmenge zwischen

der Social Choice Theorie und der Informatik und deckt verschiedene Themenbereiche

ab. Drei davon werden in dieser Arbeit betrachtet.

In Multiagent Resource Allocation ist die Aufgabe, verschiedene unteilbare Güter auf eine

Menge von Agenten aufzuteilen, wobei das Ziel ist, einige Fairness- und Social Welfare-

Kriterien zu erfüllen. Die allgemeinen Entscheidungsprobleme, die den Problemen, eine

Allokation mit maximaler sozialer Wohlfahrt zu finden, zugrunde liegen, sind entweder

als NP-vollständig bekannt oder die NP-Vollständigkeit wird in dieser Arbeit bewiesen.

Weiterhin wird gezeigt, dass einige exakte Versionen dieser Probleme DP-vollständig

sind.

Eine Forschungsfrage im Bereich der Wahlsysteme ist das Possible-Winner-Problem. Die-

ses Problem wird in dieser Arbeit mit gewichteten Wählern und unter drei Arten der

Unsicherheit behandelt. Beim Possible-Winner-Problem mit Hinblick auf das Hinzufügen

von neuen Kandidaten ist die Frage, ob es möglich ist, einen ausgezeichneten Kandi-

daten zum Gewinner einer Wahl zu machen, wenn neue Kandidaten nach der Stimmab-

gabe hinzugefügt werden. Verschiedene NP-Vollständigkeitsbeweise werden für diverse

Wahlsysteme gezeigt. Dabei wird sowohl der Fall von uneindeutigen Gewinnern als

auch der Fall von eindeutigen Gewinnern betrachtet. Weiterhin wird die Zugehörigkeit

zur Klasse P für beide Fälle bewiesen. Eine weitere Variante vom Possible-Winner-

Problem ist das Possible-Winner-Problem mit ungewissem Wahlsystem. Bei diesem Prob-

lem wird eine Klasse von Wahlsystemen vorgegeben und der Wahlvorstand sucht nach der

Stimmabgabe ein bestimmtes Wahlsystem aus dieser Klasse aus. Die Frage ist wieder,

ob ein ausgezeichneter Kandidate zum Gewinner der Wahl gemacht werden kann. Dieses

Problem wird für die Klasse der Scoring-Protokolle und für Copelandα-Wahlen betra-

chtet. Das dritte Problem, das betrachtet wird, ist die Frage nach den Gewichten der

Wähler. Beim Possible-Winner-Problem mit unsicheren Gewichten ist die Frage, ob

ein ausgezeichneter Kandidat zum Gewinner der Wahl werden kann, wenn die Gewichte

V

einiger Wähler erst nach der Stimmabgabe festgelegt werden. Diese Frage wird mit Hin-

blick auf verschiedene Wahlsysteme untersucht. Für einige Wahlsysteme wird die NP-

Vollständigkeit dieses Problems bewiesen, während für einige andere die Zugehörigkeit

zur Komplexitätsklasse P gezeigt wird.

Der dritte behandelte Themenbereich ist verwandt mit dem Bereich Preference Aggrega-

tion. Diese Arbeit behandelt das Rating-Problem, das beim Peer-Review-Prozess auftritt

und schlägt zwei neue Verfahren vor, um die Punkte, die die Gutachter für die Paper

vergeben, zu kalibrieren. Außerdem wird neben diesen kalibrierten Punkten noch die

Härte der Gutachter geschätzt. Natürlich sind die kalibrierten Punkte realistischer als

eine einfache Mittelwertbildung, wenn die Härte der Gutachter mit berücksichtigt wird,

wobei die Mittelwertbildung heutzutage typischerweise bei Konferenzen und Workshops

angewendet wird. Die vorgeschlagenen Ansätze werden sowohl anhand konstruierter

Beispiele als auch mit echten Daten eines Workshops, der 2010 in Düsseldorf stattfand,

evaluiert.

VI

Abstract

Computational social choice is an emerging field at the intersection between social choice

theory and computer science and covers several topics. Three of them are investigated in

this thesis.

In multiagent resource allocation the task is to distribute indivisible and nonshareable

items among a set of agents, where the goal is to fulfill some criteria of fairness or social

welfare. In this thesis different notions of social welfare optimization are studied. The

general decision problems underlying the problems of finding allocations with maximal

social welfare are either known to be NP-complete or proved to be NP-complete in this

thesis. Furthermore, some of the exact versions of these problems are shown to be DP-

complete.

One research question in the field of voting is the possible winner problem. This problem

is studied with weighted voters and under three types of uncertainty in this thesis. The

possible winner problem with respect to the addition of new candidates asks whether it is

possible to make a distinguished candidate a winner of a given election if new candidates

are added after all votes have been cast. Several NP-completeness results are shown for

several voting systems in both the co-winner case and the unique-winner case. Further-

more, membership in P is proved for veto voting in both cases. Another variant of the

possible winner problem is possible winner with uncertain voting system. Here, only a

class of voting systems is given and after all votes have been cast, the chair chooses a spe-

cific voting system from this class. Again, the question is whether a specific candidate can

be made a winner of the election by choosing the appropriate voting system. This prob-

lem is studied for scoring rules and for Copelandα elections, again with weighted voters.

In the third possible winner problem considered, uncertainty concerns the weights them-

selves. In the possible winner problem with uncertain weights, the question is whether

a distinguished candidate can be made a winner of the election if the weights of some

voters can be adjusted after all votes have been cast. This question is explored for several

voting systems in this thesis, for some of them NP-completeness is proved, whereas for

some of them membership in P is shown.

VII

The third topic studied is related to preference aggregation. In this context, this the-

sis studies the rating problem in the peer reviewing process and proposes two new ap-

proaches for aggregating the scores that reviewers give for the examined papers. Besides

aggregating these scores, also the rigor of the reviewers is estimated by statistical anal-

ysis. Of course, when taking the degree of rigor into account, aggregating the scores

is more realistic than simply computing the average, which is typically done for con-

ferences and workshops nowadays. The proposed methods are evaluated by small toy

examples as well as by real-world data from a workshop which took place in Düsseldorf

in 2010.

VIII

Acknowledgements

At first I wish to thank my advisor, Prof. Jörg Rothe, for the interesting topic and for his

support. Of course, I also wish to thank the additional reviewers, Prof. Martin Mauve

and Prof. Nicolas Maudet, for carefully reviewing this work.

But there are many other people who also supported my work. I wish to thank all the

co-authors for the outstanding joint work on the papers: Dorothea Baumeister, Nhan-

Tam Nguyen, Trung Thanh Nguyen, Jörg Rothe, Joachim Rudolph, Lena Schend, Björn

Scheuermann, Dietrich Stoyan, and Lirong Xia.

Furthermore, I wish to thank Florian Jarre, Wolfgang Kiess, Martin Mauve, and Björn

Scheuermann for the support of my Bachelor thesis and the joint work for the resulting

papers on offline time synchronization. This introduced me to academic work and sparked

my interest in writing scientific papers.

Moreover, I wish to thank my former colleagues Gabor Erdelyi and Claudia Lindner who

especially supported me at the beginning of my work.

In addition, I wish to thank Dorothea Baumeister, Angelika Ehresmann-Schulz, Carola

von Glasow, Anja Rey, Lena Schend, Wolfgang Schulz, and my sister, Mariana Roos,

for carefully proof-reading this thesis, Guido Königstein for technical support, Frank

Gurski for helpful hints regarding (in-)approximability, and Rolf Haenni for his talk about

preference aggregation at COMSOC ’08—this talk inspired me to investigate this area of

computational social choice.

At last, I wish to thank Dario Uleri for selling refreshing ice cream next to my door in

the summer.

,

I was supported in part by DFG grant RO 1202/14-1 and a DAAD-PPP grant in the

PROCOPE project.

IX

Contents

Abstract VII

Acknowledgements IX

List of Figures XIII

List of Tables XV

1. Introduction 1

2. Preliminaries 5

2.1. Notation . 5

2.2. Complexity Theory . 6

2.2.1. Central Complexity Classes and Reducibility 6

2.2.2. The Boolean Hierarchy over NP 9

2.2.3. The Polynomial Hierarchy . 10

2.2.4. Other Classes . 12

2.3. Optimization Problems . 13

2.3.1. Linear Programming . 13

2.3.2. Quadratic Programming . 15

2.4. Computational Social Choice . 16

2.4.1. Multiagent Resource Allocation . 18

2.4.2. Voting . 26

2.4.3. Preference Aggregation . 38

3. Complexity of Multiagent Resource Allocation 41

3.1. Results and Related Work . 42

3.2. Social Welfare Optimization with Utilities as Bundles 44

3.3. Social Welfare Optimization with k -additive Utilities 54

3.4. (In-)Approximability of Social Welfare . 63

XI

Contents

4. Complexity of Possible Winner Problems 67

4.1. Possible Winner with Respect to the Addition of New Alternatives 69

4.1.1. Results for Possible co-Winners . 69

4.1.2. Results for Unique Winners . 74

4.2. The Possible Winner Problem with Uncertain Weights 78

4.3. The Possible Winner Problem Under Uncertain Voting System 91

5. Peer Reviewing 99

5.1. Model Assumptions and an Example . 100

5.2. Two-Way Classification Models . 101

5.2.1. The Linear Model: Identical Variances of Scores 101

5.2.2. The Nonlinear Model: Varying Variances of Scores 106

5.2.3. Notes about the Nonlinear Model of AAAI’11 107

5.3. A Case Study . 108

5.4. Conclusions . 112

A. Alternative and Additional Proofs 113

A.1. MARA with utilities as bundles . 113

A.2. MARA with k -additive utilities . 116

B. Additional Information for Peer Reviewing 119

Bibliography 123

XII

List of Figures

2.1. The central complexity classes and their inclusions, taken from [107] . . . 8

2.2. Inclusions of the classes of the polynomial hierachy 12

2.3. Hierarchy of possible winner problems . 34

3.1. Graph G for Example 3.14 . 56

3.2. Graphs G and H for Example 3.16 . 60

4.1. Network for the election in Example 4.18 84

4.2. Votes V0 of Example 4.26 . 88

XIII

List of Tables

3.1. Complexity results for MARA . 44

3.2. Utilities of the agents related to formula ϕ 48

3.3. Utilities of the agents related to formula ϕ 51

3.4. The utilities of the agents for Example 3.14 57

3.5. The 2-additive utilities of the agents a2, a4, a6, and a8 in Example 3.14 . 58

3.6. Utilities of the agents for Example 3.16 61

3.7. Allocation for Example 3.16, maximizing egalitarian social welfare. 62

4.1. PcWNA and PWNA for the case of weighted voters 67

4.2. Overview of the complexity results obtained for PWUW-problems 68

4.3. Overview of the complexity results obtained for PWUVS 68

4.4. Scores of the candidates in Example 4.5 73

4.5. Votes before and after insertion of the new candidate d in Example 4.5 . . 74

4.6. Votes of the election in Example 4.18 . 84

4.7. Values N(c′, c′′) for the votes V1 of 4.26 89

4.8. Values N(c′, c′′) for the votes of V0∪̇V1 of 4.26 89

5.1. Data for a toy example taken from Lauw et al. [79]. 100

5.2. Parameters for the toy example from Lauw et al. [79]. 104

5.3. Biases of the estimators of the βj for the second toy example 105

5.4. The estimated scores from all three approaches (paper number 1 to 40) . 109

5.5. The estimated scores from all three approaches (paper number 41 to 57) . 110

5.6. The reviewers’ parameters. 111

B.1. Input data from the review process for COMSOC-2010 121

XV

Chapter 1.

Introduction

One vibrant research area within the emerging field of computational social choice [31,

22, 113] is multiagent resource allocation [28]. In particular, it has several applications in

multiagent systems, a subfield of (distributed) artificial intelligence, and it is also closely

related to other areas of economics and social choice theory as well as to areas of com-

puter science. The following scenario is modelled by multiagent resource allocation. Two

sets are given, one of them is a set of agents and the other one is a set of resources.

The resources are assumed to be indivisible and nonshareable. All agents express their

preferences over the (bundles of) resources using utility functions. One central goal is to

find an allocation of resources that is optimal in terms of social welfare. Three common

types of social welfare are investigated in this thesis, namely utilitarian social welfare,

egalitarian social welfare, and social welfare with respect to the Nash product. Regard-

ing utilities, two different representation forms are considered, namely the bundle form

and the k-additive form. Informally, the considered measures of social welfare can be

explained as follows. Utilitarian social welfare gives the total—and therefore, also the

average—utility realized by all agents. For example, the auctioneer in an auction aims at

maximizing the total revenue of the goods auctioned and thus, his possible profit. On the

other hand, egalitarian social welfare measures the utility of the agent who is worst off

in an allocation. This can be important and might be the right measure to use in certain

other real-world situations. For example, consider the task of distributing humanitarian

aid items, such as food, tents, medical aid, etc., among the survivors of a disaster, e.g.,

an earthquake or a tsunami. As noted in [106], it is more appropriate to use egalitarian

than utilitarian social welfare because what matters most in such situations is the survival

of those who are worst off and not the total utility realized by all survivors. Assuming

the same utilities for all persons, giving everything to just one of them has the same

utilitarian social welfare as distributing everything equally among all persons, but only

one might survive and thousands might die in the first case, whereas the first case has

1

Chapter 1. Introduction

an egalitarian social welfare of zero and the second case has maximal egalitarian social

welfare. Thus, “fairness” is better captured in terms of egalitarian than utilitarian social

welfare. Finally, the Nash product, the product of the agents’ utilities, can be seen as

a compromise between these two approaches. On the one hand, it has the strict mono-

tonicity property of utilitarian social welfare: assuming all agents have positive utilities,

an increase in any agent’s utility leads to an increase of the Nash product as well. On

the other hand, the Nash product increases as well when reducing inequitableness among

agents by redistributing utilities, thereby providing a measure of fairness. See the book of

Moulin [89] for more beneficial properties of the Nash product. All these notions of social

welfare have in common that they seek to model a high value of social welfare to imply

well-being among the whole society of agents. Therefore, the goal in multiagent resource

allocation is to find allocations that maximize social welfare. Besides the different notions

of social welfare, a central role plays the way the utilities are given. For human agents,

a natural way to express utilities is to list all bundles of resources and attach some value

to each bundle. But utilities can also be expressed in an additive manner: values are

assigned to single utilities and the value of a bundle is obtained by addition of the values

for the single resources contained in this bundle. Furthermore, it might be helpful to

express the synergetic value for ownig a specific set of resources. In order to express these

synergetic values, even specifying utilities for small bundles of resources may be allowed

and they are taken into account when computing utilities for sets of resources. This leads

to the k-additive form for representing utilities. The parameter k denotes that utilities

can be specified for all bundles with at most k resources. Note, that the utilities are still

additive and thus, also the utilities for all smaller subsets are added. As discussed above,

resource allocation problems are important for human agents, but, however, one is mostly

concerned with (autonomous) software agents having individual utilities and acting in a

shared environment, e.g., in a multiagent system. Therefore, it is of particular interest

to study the computational complexity of the task of maximizing social welfare—for the

different notions of social welfare and for distinct ways of representing utility functions.

Another central task in computational social choice is the study of algorithmic and compu-

tational properties of voting systems [56]. One of the classical problems in this field is the

manipulation problem, which deals with the question of whether a voter can benefit from

strategic behavior [3, 37, 39, 57]. The celebrated Gibbard-Satterthwaite theorem [61, 114]

says that in every nondictatorial voting system a strategic voter can alter the outcome

of an election to his or her advantage by voting insincerely. Computational complexity

2

can be used as a barrier to protect elections from manipulation attempts [3]. In some

voting systems, though manipulable in principle, it is computationally hard to compute

successful manipulative preferences to cast. A generalization of the manipulation prob-

lem is the possible winner problem [75]. Here the voters do not provide linear orders

over the candidates, but partial orders. The question is whether there is an extension of

the partial orders into linear ones such that a distinguished candidate wins the election.

A variant of the possible winner problem, which is studied in this thesis, is the possi-

ble winner problem with respect to the addition of new candidates [32]. In this problem

the voters submit linear orders over an initial set of candidates and after reporting their

preferences some new candidates are introduced. Therefore, all ballots over the whole

set of candidates are partial orders only. Now, the question is whether there exists an

extension of the partial orders to linear orders over the whole set of candidates, such

that a distinguished candidate among the initial ones can be a winner of the election.

Therefore, the possible winner problem with respect to the addition of new candidates

is a special case of the original possible winner problem and is in some sense dual to the

coalitional manipulation problem [32]. Furthermore, the possible winner problem with

respect to the addition of new candidates is related to the problem of control via adding

candidates [4] and to the cloning problem in elections [49]. Since this problem is studied

with weighted voters, a natural subsequent question is to study the weighted possible

winner problem, where not some of the voters’ preferences, but some of their weights,

are uncertain. The related problem is called the possible winner problem with uncertain

weights and four variants regarding constraints on the weights are studied in this thesis.

Furthermore, some of these variants generalize constructive control by adding/deleting

voters [4]. The following situation was considered by Baumeister et al. [9] and motivates

why it is interesting to study this problem. Imagine a company that is going to decide

on its future strategy by voting at the annual general assembly of stockholders. Among

the parties involved, everybody’s preferences are common knowledge. However, who will

succeed with its preferred alternative for the future company strategy depends on the

stockholders’ weights, i.e., on how many stocks they each own, and there is uncertainty

about these weights. It might be possible to assign weights to the parties involved, e.g.,

by buying new stocks, such that a given alternative wins? Moreover, the possible winner

problem with uncertainty about the election rule [121] is studied. In general, the possible

winner problem under uncertain voting rule asks whether a distinguished candidate can

be made winning an election by choosing one election rule from a given class of rules

after all votes have been cast. A motivation for uncertainty about the voting rule is that

this might prevent the voters from attempting to manipulate the election, since reporting

an insincere preference may result in a worse outcome for them. Baumeister et al. [8]

3

Chapter 1. Introduction

considered the following simple example. There is an election with three candidates (a,

b,and c) and nine sincere voters. Six of them cast the vote c > a > b, two b > a > c,

and one b > c > a. Moreover, there are three strategic voters whose true preferences are

a > b > c. If the strategic voters would know for sure that the election is held under the

plurality rule, which values a first position by one point and all other positions by zero

points, they might have an incentive to not waste their votes by voting sincerely a > b > c

but rather to help their second preferred candidate, b, to tie for winner with c by casting

the three votes b > a > c. However, if the election is held under the Borda rule (which,

for three candidates, values a first position by two points, a second position by one point,

and a last position by zero points), casting the three insincere votes b > a > c would make

their most despised candidate c win, whereas the three sincere votes a > b > c would

make their favorite candidate a win. This means that uncertainty about the scoring rule

may give the voters a strong incentive to reveal their true preferences.

The third topic studied in this thesis is peer reviewing, which is the key ingredient of

evaluating the quality of scientific work. Program committees of conferences and journal

editors have to decide which papers to accept for publication and which to reject. Their

decision is typically based on the review scores assigned by the individual reviewers to

the submissions. However, some reviewers may be more lenient than others, they may

be biased one way or the other, and they often have highly subjective preferences over

the papers they have to review. Moreover, each reviewer usually evaluates only a very

small fraction of the submissions and thus has only a “local” view. Despite all these

shortcomings, the obtained review scores are aggregated in order to globally rank all

submissions and to make the “right” acceptance/rejection decision. A common method

is to simply compute the average of each submission’s review scores, possibly weighted by

the reviewers’ individual and rather subjective confidence levels. Unfortunately, the global

ranking thus produced often suffers from a certain lack of fairness, as the reviewers’ biases

and limitations are neither known nor taken into account. In this thesis, two statistical

methods are proposed for aggregating review scores, which both take the rigor of the

reviewers into account. Both methods can be realized by using standard software. The

simpler method uses the well-known fixed-effects two-way classification with identical

variances. For each reviewer one parameter measuring his or her rigor is estimated. The

more advanced method assumes different variances and two parameters for the reviewer’s

degree of rigor are estimated. Therefore, the application of both methods implies an

evaluation of the reviewers as well.

4

Chapter 2.

Preliminaries

Before briefly discussing complexity theory and defining the investigated problems, the

notation used during this thesis will be given.

2.1. Notation

Real numbers are named by R, whereas R+ = {x ∈ R | x > 0}.

Rational numbers are named byQ. Positive rational numbers are named byQ+.

Integers are named by Z.

Naturals are named by N. Note, that N = {1, 2, 3, . . .} starts with one. To have the

numbers started with zero, the notation is N0 = {0, 1, 2, 3, . . .}.

The set difference of two sets A,B is denoted by A \B.

The complement of a set A is denoted by A.

The power set of some set A is denoted by 2A.

The cardinality of a set A is denoted by |A|. Likewise the cardinality of a list L is denoted

by |L|.

A∪̇B is the disjoint union of two setsA,B, i.e., A∪̇B = A∪B withA∩B = ∅.

Intervals including the endpoints a, b are denoted by [a, b], intervals excluding the end-

points are denoted by]a, b[.

Vectors are labeled by lowercase letters, whereas matrices are labeled by uppercase let-

ters. An explicit definition of a matrix is denoted in round brackets, i.e., A =

(
0 1

2 3

)
,

5

Chapter 2. Preliminaries

whereas matrices consisting of other matrices or vectors (block matrices) are denoted in

square brackets, i.e., B =

[
A −A
−A A

]
. Transposed vectors and matrices are denoted

by xT and AT , respectively. Furthermore, the n × n identity matrix is labeled by Un,

i.e.,

Un = (δij)1≤i,j≤n with δij =

1 for i = j

0 for i 6= j.

Names of specific problems are stated in Capitals.

The negation of a variable x in a boolean formula is denoted by ¬x. Moreover, let >
denote “true” and let ⊥ denote “false” in boolean formulas. In addition, ∨ denotes “or”

and ∧ denotes “and” in boolean formulas.

2.2. Complexity Theory

This chapter gives a brief introduction to complexity theory. The reader is assumed to

be familiar with the concepts of algorithms and Turing machines. Fur further reading, see,

e.g., the textbooks by Garey and Johnson [60], Papadimitriou [99], and Rothe [112].

The most central role in complexity is played by the complexity classes P and NP. In-

formally speaking, problems in P can be efficiently solved, whereas NP covers potentially

more problems – those that are NP-hard are said to be inefficient to solve. In fact, it is

even not known whether P and NP are really different.

2.2.1. Central Complexity Classes and Reducibility

At first, define the classes P and NP formally.

Definition. P is the class of decision problems a deterministic Turing machine can solve

in time polynomial in the length of the input. NP is the class of decision problems a

nondeterministic Turing machine can solve in time polynomial in the length of the input.

Obviously, P ⊆ NP, since each deterministic Turing machine can be seen as a nondeter-

ministic one.

6

2.2. Complexity Theory

To classify problems according to their complexity, upper and lower bounds have to

be considered. A possibility to prove an upper bound is to design an algorithm with

a suitable runtime. Proving lower bounds is different. One concept of proving lower

bounds is reducibility. Whereas there are different reductions, for the proofs in this

thesis only the polynomial-time many-one reduction “≤p
m ” is used. It is defined as

follows.

Definition. Let Σ be an alphabet and A,B ⊆ Σ∗ two problems over Σ. Define A≤p
mB

if there is a total function f : Σ∗ 7→ Σ∗ which can be computed in polynomial time such

that

x ∈ A ⇐⇒ f(x) ∈ B for all x ∈ Σ∗.

A is said to be polynomial-time many-one reducible to B then.

Now, hardness of a complexity class with respect to ≤p
m can be defined.

Definition. Let C be a complexity class and let C,D ∈ Σ∗ be two problems over Σ.

If C ≤p
mD holds for all problems C ∈ C, then D is C-hard with respect to ≤p

m . Since

≤p
m is the only reduction mentioned in this thesis, “D is C-hard” is used for short in the

following.

If D ∈ C and D is C-hard, it is said to be C-complete.

In terms of NP, consider the following example.

Example 2.1. Let A,B ∈ Σ∗ be two problems over Σ. B is NP-hard if A≤p
mB holds for

all A ∈ NP. B is NP-complete, if B is NP-hard and B ∈ NP.

Instead of proving A≤p
mB for all A ∈ NP, one can prove C ≤p

mB for one NP-complete

problem C since A≤p
mC holds for all A ∈ NP by the definition of NP-completeness and

the transitivity of ≤p
m . On the other hand, if B ∈ P and A≤p

mB then A ∈ P. Therefore,

≤p
m can also be used to prove upper bounds for P. The first natural problem shown to be

NP-complete was SAT [41]. SAT is the problem given a boolean formula in conjunctive

normal form, is it satisfiable? A comprehensive list of NP-complete problems can be

found in the textbook by Garey and Johnson [60]. The following is an example for a

≤p
m -reduction, taken from Karp’s early work on computational complexity [72], to show

NP-completeness of 3-SAT. The latter problem is defined by a given boolean formula in

conjunctive normal form with at most three literals per clause and the question whether

this formula is satisfiable.

7

Chapter 2. Preliminaries

Example 2.2. (Karp [72]) Assume a clause (x1 ∨ x2 ∨ . . . ∨ xm), where xj , 1 ≤ j ≤ m are

literals and m > 3. Replace this clause by

(x1 ∨ x2 ∨ y1) ∧ (x3 ∨ x4 ∨ . . . ∨ xm ∨ ¬y1) ∧ (¬x3 ∨ y1) ∧ . . . ∧ (¬xm ∨ y1),

where each clause has at most m− 1 literals. By repeating this procedure, it is possible

to construct a boolean formula with at most three literals per clause which is satisfiable

if and only if the original formula is satisfiable.

The class of the complements of the problems of a complexity class C is called coC and

formally defined by coC = {A | A ∈ C}. In terms of NP, the class coNP is defined

by

coNP = {A | A ∈ NP}.

Whereas P = coP holds, it is not known whether NP equals coNP or not.

Figure 2.1 shows the complexity classes P, NP, and coNP. Furthermore, NP-hard, coNP-

hard, NP-complete, and coNP-complete problems are illustrated. Note, that in this

figure P 6= NP is assumed. Furthermore, this picture shows that NP-hard problems

have not necessarily to be members of NP, they may be harder than NP-complete prob-

lems.

NP−

completecomplete

NP−hard coNP−hard

coNP−

P

NP coNP

Figure 2.1.: The central complexity classes and their inclusions, taken from [107]

8

2.2. Complexity Theory

2.2.2. The Boolean Hierarchy over NP

Of course, P and NP are not the only complexity classes. There are many others, one

of them is DP, called Difference NP, and was introduced by Papadimitriou and Yan-

nakakis [100]. Formally, DP is defined as the class of differences of any two NP problems,

hence

DP = {A \B | A,B ∈ NP}.

An equivalent definition is DP = {A ∩ B | A,B ∈ NP}. DP covers many inter-

esting problems, such as exact versions of NP problems. One of them is given be-

low.

Example 2.3. Consider graph colorability. Given a graph G = (V,E), the problem asks

whether it is possible to color the vertices in a way such that two adjacent vertices never

have the same color. The question of whether this is possible with at most k colors is

NP-complete if k ≥ 3 [60, 118]. It is easy to see, that this problem is “easy to solve”, i.e.,

in P, for k ≤ 2. The exact version of this problem asks whether it is possible to color

the graph with at most k colors and furthermore whether it is not possible to color the

graph with less than k colors. The latter problem is proved to be in DP (in fact, it is

DP-complete for k ≥ 4) by Rothe [111].

Furthermore, a complete hierarchy can be defined this way. It is called the boolean

hierarchy over NP, see, e.g., the work of Cai et al. [23, 24] or the survey by Riege

and Rothe [105]. In the following, the stages BH`(NP) of the boolean hierarchy are

defined. Informally speaking, the boolean hierachy over NP is an ascending chain of

differences of nested NP-problems. Formally, the stages are defined inductively and listed

below.

� Stage zero is the class P, thus BH0(NP) = P.

� Stage one is the class NP, thus BH1(NP) = NP and coBH1(NP) = coNP.

� Stage two is the class DP, thus BH2(NP) = DP and coBH2(NP) = coDP. Recalling

the definition of DP = {A \ B | A,B ∈ NP}, the beginning of the chain is

observable.

� In general, stage j is defined as

BHj(NP) = {A ∪B | A ∈ BHj−2(NP), B ∈ BH2(NP)}

for j ≥ 3. Analogously, coBHj(NP) = {A ∩ B | A ∈ BHj−2(NP), B ∈ BH2(NP)}
for j ≥ 3.

9

Chapter 2. Preliminaries

� The boolean hierachy over NP itself is defined as

BH(NP) =
⋃
k≥1

BHk(NP).

Of course, this hierachy may also be defined over other classes than NP, see Hemaspaandra

and Rothe [70, 11].

Now turning back to DP because it is the highest stage of this hierachy which is important

in this thesis. To show DP-completeness, one can make use of Wagner’s tool [120].

Formally, this technique applies to all stages of the boolean hierarchy over NP. The

version stated in Lemma 2.4 is for DP only.

Lemma 2.4 (Wagner [120]). Let A be some NP-complete problem and let B be an arbi-

trary problem. If there exist a polynomial-time computable function f such that, for all

input strings x1 and x2 for which x2 ∈ A implies x1 ∈ A, we have that

(x1 ∈ A ∧ x2 6∈ A) ⇐⇒ f(x1, x2) ∈ B,

then B is DP-hard.

Note that there are other ways of showing DP-completeness, see, e.g., Chang and Kadin [26].

2.2.3. The Polynomial Hierarchy

At this point, only a short description of this hierarchy is given. There are no new results

concerning this hierarchy in this thesis, but some known results are cited.

At first, the notion of an oracle Turing machine [41] is needed to define AB for two

complexity classes, A and B.

Definition. An oracle Turing machine is a Turing machine which is equipped with an

additional oracle. Formally, the machine is equipped with an additional oracle-query tape

and a question state. If the machine reaches the question state, the oracle A answers to

the question q written on the query tape. Note, that only yes/no-questions are allowed on

the question tape and the oracle will answer “yes” if q ∈ A and “no” if q 6∈ A.

Now, it is possible to define a complexity class AB.

Definition. Let A,B two arbitrary complexity classes. AB is the class of problems that

can be accepted by an A oracle Turing machine that is equipped with an B-oracle.

10

2.2. Complexity Theory

For example, PP contains all problems A which can be decided via a deterministic

polynomial-time oracle Turing machine M and an oracle set B ∈ P such that MB ac-

cepts precisely the strings in A via queries to B. In other words, a polynomial number of

queries is allowed to an oracle which can answer questions that can be decided in deter-

ministic polynomial time. This machine can be simulated by a deterministic polynomial

time Turing machine, hence PP = P.

Like the boolean hierarchy, the polynomial hierachy over NP is inductively defined by

Meyer and Stockmeyer [88]. For each j ≥ 0, stage j consists of three classes: ∆p
j , Σp

j , and

Πp
j .

� Stage zero is defined as ∆p
0 = Σp

0 = Πp
0 = P.

� For j ≥ 1, the classes of stage j are defined by

∆p
j = PΣpj−1 ,

Σp
j = NPΣpj−1 , and

Πp
j = coΣp

j .

� Finally, the polynomial hierachy itself is defined as

PH =
⋃
k≥0

Σp
k.

For example, the stages one and two of this hierarchy are

∆p
1 = PP = P,

Σp
1 = NPP = NP,

Πp
1 = coNPP = coNP,

∆p
2 = PNP,

Σp
2 = NPNP, and

Πp
2 = coNPNP.

The inclusions of the different classes are shown in Figure 2.2. Again, it is not known

whether all these inclusions are strict.

11

Chapter 2. Preliminaries

∆p
0 = Σp

0 = Πp
0 = ∆p

1

Σp
1

Πp
1

⊆

⊆
∆p

2

⊆

⊆

Σp
2

Πp
2

⊆

⊆
∆p

3

⊆

⊆

Σp
3

Πp
3

⊆

⊆
PH

· · ·

· · ·

· · ·

Figure 2.2.: Inclusions of the classes of the polynomial hierachy

2.2.4. Other Classes

An interesting class is Θp
2 [66]. A different notation for Θp

2 is PNP[log]. It contains all

problems which can be decided via a deterministic polynomial-time oracle Turing machine

M and an oracle set B ∈ NP such that MB accepts precisely the strings in A via queries

to B. In addition, the number of allowed queries to the oracle is in O(log(n)) where n is

the length of the input. The inclusions NP ⊆ Θp
2 ⊆ ∆p

2 are known.

Another class that is used in this thesis is ZPP [103, 62]. ZPP is short for zero-error prob-

abilistic polynomial time. It is the class of problems a probabilistic Turing machine can

“solve” in polynomial time, where three answers of the Turing machine are allowed, “yes”,

“no”, and “I do not know”, and the following three conditions hold.

1. The machine will halt and will give an answer after a polynomial number of steps.

2. Whenever the machine answers “yes” or “no”, the answer is correct.

3. With probability less than 1/2, the machine answers “I do not know”.

If the answer is “I do not know”, it is possible to run the machine again with the same

input. Since the machine works probabilistically, it is possible to get one of the an-

swers “yes” or “no” in the next run. Therefore, running the machine k times with

the same input, the possibility of getting “I do not know” for every run is less than

1/2k.

A results is stated for the case P 6= ZPP, although this is still an open problem.

12

2.3. Optimization Problems

2.3. Optimization Problems

An optimization problem typically searches for a vector x ∈ Rn, such that x fulfills some

optimality criterion (called objective function) as well as some constraints. A vector x

which fulfills all the constraints is called a feasible solution. A feasible solution which

also fulfills the objective is called an optimal solution. This optimal solution is not

necessary unique. The value of the objective function for an optimal solution is called

the optimum.

Both, the objective function and the constraints can be omitted. If the objective function

is missing, the problem is called a feasibility problem and if the constraints are missing

the problem is called an unconstrained optimization problem. Special constraints of the

form x ≥ l or x ≤ u for some values l, u ∈ R are called bounds. A typical bound is

x ≥ 0.

Depending on the kind of the objective function and the constraints, different classes

of optimization problems are known. Those who play a central role in this thesis are

defined in the following. For further reading see, e.g., the textbook by Nocedal and

Wright [98].

Optimization problems are solved by numerical methods in practice. Since such methods

can only deal with a restricted quantity of floating point numbers, only a subset of Q

can be computed. Therefore, the number field Q is used during this thesis when talking

about optimization problems.

2.3.1. Linear Programming

The notation in this chapter basically follows the German textbook by Jarre and Stoer [71].

A linear optimization problem, a.k.a. linear program (LP for short), is defined as

minimize cTx (2.1)

such that

Ax ≥ b (2.2)

with c, x ∈ Qn, b ∈ Qm, and A ∈ Qm×n holds. The objective function is (2.1), whereas

(2.2) are the constraints.

13

Chapter 2. Preliminaries

To transform problems into this standard representation, note that

minimize cTx ⇐⇒ maximize − cTx.

Furthermore, let aj,∗ be a row fromA. A constraint can be transformed by

aj,∗x ≤ bj ⇐⇒ −aj,∗x ≥ −bj .

Moreover, constraints like

aj,∗x = bj

can be achieved by the following two constraints

aj,∗x ≥ bj and

−aj,∗x ≤ −bj .

There are several approaches known for solving an LP. On the one hand, there is the

simplex method, which was developed by Dantzig [42]. While it is beeing a quite simple

approach, its runtime can be exponential in the size of the input [73]. Another approach

are interior point methods, e.g., the the method by Mehrothra [87]. Both approaches were

used in Scheuermann et al. [115]; whereas QSopt1 uses the simplex algorithm, SeDuMi2

and the implemented algorithm in Scheuermann et al.[115] are interior point methods.

Another important approach is the ellipsoid method. While it is considered to be too

slow for practical use, it was the first algorithm for which a deterministically polynomial

runtime is proved [64]. Therefore, when talking about linear programming, a polynomial

runtime can be assumed.

An interesting variant is integer programming (IP for short). Here, x is no longer chosen

from Qn, but from Zn instead. This variant is NP-complete in general. Hence, for

x ∈ Qn, the solution can be computed efficiently, whereas for x ∈ Zn the computation

can be inefficient. An IP together with the bounds 0 ≤ x ≤ 1 is called a binary integer

program, BIP for short. This restriction remains NP-complete in general, since the related

feasibility problem is NP-complete, see, e.g., Karp [72].

To illustrate LPs, consider the following example.

1http://www.isye.gatech.edu/˜wcook/qsopt/
2http://sedumi.ie.lehigh.edu/

14

2.3. Optimization Problems

Example 2.5. Consider the LP

minimize

(
1

1

)T (
x1

x2

)
such that 2x1 + 3x2 ≥ 4

as well as the bounds x1,2 ≥ 0. Constraint and bounds can be written as Ax ≥ b with

A =

2 3

1 0

0 1

 and b =

4

0

0

. Obviously, the optimal solution is x̃ =

(
0

4/3

)
with an

optimal value of x̃1 + x̃2 = 4
3 .

For IPs and BIPs, consider the following example.

Example 2.6. Consider the LP of Example 2.5, but this time as IP, i.e.,

minimize

(
1

1

)T (
x1

x2

)
such that 2x1 + 3x2 ≥ 4

as well as the bounds x1,2 ≥ 0 and the restriction x ∈ Z2. One obtains three optimal

solutions, i.e., x̃(1) =

(
2

0

)
, x̃(2) =

(
1

1

)
, and x̃(3) =

(
0

2

)
. Of course, all of them have an

optimal value of 2.

Moreover, consider the same problem as BIP, therefore alter the constraints to be x ∈

{0, 1}2. For this problem, there is only one feasible solution x =

(
1

1

)
. Of course, this

also is the optimal solution.

2.3.2. Quadratic Programming

Since in Chapter 5 linear programming is not sufficient to solve the occuring problems,

quadratic programming (QP, for short) is needed. This extends the notion of linear

programming by adding a quadratic term to the objective function. Thus, a quadratic

program in standard form is given by

minimize
1

2
xTQx+ cTx+ γ

subject to

Ax ≥ b,

15

Chapter 2. Preliminaries

where c, x ∈ Qn, b ∈ Qm, A ∈ Qm×n, γ ∈ Q, and Q ∈ Qn×n is symmetric. A QP

can be solved in polynomial time, if the matrix Q is positive definite, i.e., all eigenval-

ues of Q are positive [76]. Again, the constraints can be transformed like the ones of

LPs.

Solving of a QP is not as easy as for linear programs. For the problem occuring in

Chapter 5 of this thesis, a MATLAB script named MINQ3 is used.

To illustrate a quadratic program with n = 2, consider the following example.

Example 2.7. Consider the QP

minimize
1

2
xT

(
2 0

0 2

)
x +

(
0

−1

)T
x such that x1 + x2 ≥ 1

as well as the bounds x1,2 ≥ 0. Note, that the objective function can be written as

minimize x2
1 + x2

2 − x1.

The optimal solution is x̃ = 1
2

(
3

1

)
.

2.4. Computational Social Choice

Computational social choice, COMSOC for short, is an emerging field connecting social

choice theory and computer science [31, 22, 113].

Typically, the investigated problems have their origin in the social choice theory, e.g. the

question of a winner of an election. Most problems are solvable, therefore the upcoming

evident question is to ask about the computational complexity of these problems. As

discussed above, problems are said to be “easy” or “efficient” if they can be solved in

deterministic polynomial time. On the other hand the problems are said to be “hard” or

“inefficient” if the underlying decision problem is NP-hard. One of the roles computer

science plays in COMSOC is classifying the occuring problems regarding their computa-

tional complexity, e.g., how hard the winner determination of an election is. Furthermore,

the development of explicit algorithms for easy problems and the approximability of hard

problems are typically studied.

3http://www.mat.univie.ac.at/˜neum/software/minq/

16

2.4. Computational Social Choice

Regarding the topics which are covered by COMSOC there is no strict rule. They have

in common that a society of agents has to reach to some consensus. The agents can be

voters of an election where the consensus is the candidate who wins the election. On the

other hand the agents can be bidders in an auction and the consensus is a distribution

of the items between them. Furthermore, the agents can be judges and their consensus

is to form a joint decision.

In the following, there is a short list of topics, studied as part of computational social

choice.

� As fair division, problems are defined in which nonsharable items are to be assigned

to agents. There are two important subclasses. If the items also are indivisible,

the problem is called multiagent resource allocation, where agents have utilities over

(bundles of) resources. The task is to distribute the resources among the agents

while fulfilling several notions of fairness. See Chapter 2.4.1 for an introduction and

Chapter 3 for complexity results.

On the other hand, if the agents want to share a divisible item, the item is considered

as the cake X and hence the related problem is called cake-cutting, see, e.g., the

book by Brams and Taylor [21]. Instead of utilities, each agent has an evaluation

function vi : {X ′ | X ′ ⊆ X} 7→ [0, 1] ⊆ R for 1 ≤ i ≤ n. Typically, the evaluation

function should satisfy the following conditions.

1. vi(∅) = 0 and vi(X) = 1 are called normalization.

2. All nonempty pieces of the cake have a strict positive value, i.e., for all X ′ ⊆ X,

X 6= ∅, and 1 ≤ i ≤ n it holds vi(X
′) > 0. This is called positivity.

3. For 1 ≤ i ≤ n, it holds vi(X
′∪̇X ′′) = vi(X

′) + vi(X
′′) for X ′, X ′′ ⊆ X. This

property is called additivity.

4. For all α ∈ R ∩ [0, 1], for all X ′ ⊆ X, and for 1 ≤ i ≤ n, there is an X ′′ ⊆ X

with vi(X
′′) = α · vi(X ′). This is called divisibility.

A cake-cutting protocol is a procedure which divides the cake into pieces and al-

locates these pieces to the agents. Of course, this protocol should satisfy some

requirements regarding fairness. See, e.g., Brams and Taylor [21] for details.

� In voting theory the group of agents is a set of voters, whose task is to elect one out of

several alternatives. Several voting rules are known and several ways of influencing

the outcome of an election have been studied. A formal definition is given in the

upcoming Chapter 2.4.2, whereas new results are presented in Chapter 4.

17

Chapter 2. Preliminaries

� In preference aggregation a set of judges has to decide over a set of alternatives.

Similar to voting, it is assumed that each judge has preferences over the alterna-

tives. The task is to find a consensus for a global linear order over the alternatives.

Chapter 2.4.3 gives a formal introduction into this field. To some extent, Chapter 5

implements specific algorithms in this context.

� Similar to preference aggregation is judgment aggregation [84]. Here, the agents

do not have preference orders over a set of alternatives, rather than “yes/no”

judgement-sets, where logical dependencies are allowed. More formally, there is

a set N of n judges, i.e., N = {1, . . . , n}. Moreover there are atomic statements P .

Furthermore, let LP the set consisting of P , >, ⊥, ¬p, (p1∧p2), (p1∨p2), (p1 ⇒ p2),

and (p1 ⇔ p2) for p, p1, p2 ∈ P . The agenda Φ is a subset of LP , i.e., Φ ⊆ LP . The

task is to reach a consensus for the judges. For further reading see, e.g., List and

Pettit [84] or Endriss et al. [50].

Note, that this list is nonexhaustive. Other topics like coalition formation or algorith-

mic game theory, see, e.g., [97], in general are are considered as topics of COMSOC as

well.

For more background regarding computational social choice, see, e.g., the early survey

by Chevaleyre et al. [31], the bookchapter by Brandt et al. [22], or the German textbook

by Rothe et al. [113].

After briefly summarizing the problems studied in COMSOC, have a deeper look into

the topics concerning the new results of this thesis. The first one is multiagent resource

allocation.

2.4.1. Multiagent Resource Allocation

One topic in computational social choice is multiagent resource allocation [28], MARA

for short. The task is to distribute several items (the resources) among agents. These

agents can be humans as well as software agents. A typical scenario with humans is one

with bidders in an auction or a couple involved in a divorce. To express the needs, the

agents specify their utilities over the resources. In MARA, the agents are not necessarily

limited to specify utilities for single resources, rather than specifying utilities over sets

of resources as well. Auctions where utilities can be expressed over sets of resources, are

called combinatorial auctions, see, e.g., Conitzer et al. [40] or the book by Blumrosen and

Nisan [14]. These sets of resources are called bundles.

18

2.4. Computational Social Choice

Of course, the allocation of the resources should satisfy some criteria, such that resources

should not be allocated randomly. For example, suppose it is christmas and you have two

little children where one of them is a boy and one of them is a girl. Furthermore, you

have two gifts, a toy car and a doll. Typically, the boy is more attracted by the toy car,

whereas the girl is attracted by the doll. If you allocate the gifts at random, it is possible

that one of the children gets both gifts. Obviously, one would not consider this allocation

as fair. Moreover, it is possible, that the girl receives the toy car and the boy receives the

doll. This allocation might be in some way fair, as both kids are disappointed by their

gifts, but obviously, a better allocation would be to swap the gifts. Therefore, criteria of

optimality have to be defined carefully.

To illustrate the advantage of specifying utilities for bundles of resources as well as utilities

for single resources, suppose you are an auctioneer and you have two items, a car and

a caravan, as well as three bidders. The first one is only interested in the car and is

willing to pay 10,000 e for it. The second bidder is only interested in the caravan and

is willing to pay 2,000 e for it. The third bidder may already own a car which is not

able to tow a caravan, thus he or she is only interested to buy the car together with the

caravan and is willing to pay 13,000 e for both together, but nothing for only one of

these things. If you do not allow the agents to have utilities over bundles, you can earn

12,000 e, whereas you can gain another 1,000 e if you also consider to sell the items as

bundles.

Obviously, the complexity of specifying utilities and finding optimal allocations increases

as the number of agents and resources increases.

2.4.1.1. Basic Definitions

A MARA setting M = (A,R,U) consists of three components, which are defined as

follows [28].

� A = {a1, a2, . . . , an} is a set of n agents.

� R = {r1, r2, . . . , rm} is a set of m resources. The resources are assumed to be

indivisible and unshareable, thus they can only be assigned as a whole to an agent

and can be assigned to only one agent at the same time.

� U = {u1, u2, . . . , un} is a set of utility functions. Each uj , 1 ≤ j ≤ n, is a mapping

uj : 2R → Q. The mapping uj represents the utilities, agent aj has for each subset

of the resources. Sometimes, it is useful to restrict uj to map to a different set,

maybe Q+ or Z.

19

Chapter 2. Preliminaries

Utilities can be given in several ways. Those for which new results are discovered

in this thesis are the bundle form and the k-additive form. They are described in

the following.

– In the bundle form, for 1 ≤ j ≤ n, agent aj ’s utility for any bundle S ⊆ R

of resources is given by (S, uj(S)). Such a subset S ⊆ R is called a bundle

of resources. Whenever the utility uj(S
′) = 0 for some bundle S′, the related

pair is omitted.

– In the k-additive form, where k ∈ N is fixed, each agent aj , 1 ≤ j ≤ n, has

a utility for any bundle T ⊆ R of resources, where |T | ≤ k. In this case, αTj
is a unique coefficient expressing the “synergetic” value of agent aj owning all

the resources in T . The utility of an arbitrary set S ⊆ R of resources can be

calculated by

uj(S) =
∑

T⊆S,|T |≤k

αTj .

For other representations of utilities, see Chapter 2.4.1.2. Note, that the bundle form is

“fully expressive”, i.e., every utility function can be described in this form. However, as

shown in Chevaleyre et al. [29], its size can be exponential in the number of resources:

Assume an agent who has a utility of one for every single resource, a utility of two for every

bundle containing exactly two resources, a utility of three for every bundle containing

exactly three resources and so on. Hence, for this agent an exponential number, more

precisely 2m − 1, pairs of non-zero utilities have to be specified.

Of course, these utilities can be more succinct using the k-additive form for k = 1: Just

choose αT = 1 for each set T ⊆ R with |T | = 1. Hence, only m coefficients have to be

specified. Moreover, this shows that the bundle form cannot polynomially simulate the

k-additive form, see also Chevaleyre et al. [28].

A representation form Υ1 can polynomially simulate representation form Υ2 if it is possi-

ble to express all utilities from Υ1 by Υ2 and ‖Υ1‖ ≤ p(‖Υ2‖), where p is some polynomial

and ‖Υ‖ is the length of the representation.

On the other hand, the bundle form cannot polynomially simulate the k-additive form.

One example can be found in Chevaleyre et al. [29]: Imagine an agent who has a utility of

one for each bundle containing exactly one resource and a utility of zero for any other bun-

dle of resources. Obviously, in the bundle form there are only |R| = m utilities to be spec-

20

2.4. Computational Social Choice

ified. In the k-additive form, the coefficients have to be defined by

αT = |T | · (−1)|T |+1.

Since αT = 0 ⇔ T = ∅, there are 2m − 1 coefficients to be specified. Furthermore, from

this example it follows that the k-additive form is only fully expressive if k is sufficiently

large enough.

Of course, there are examples where both representation forms need an exponential size.

Consider an agent who has a utility of exactly one for any nonempty set of resources.

Obviously, one has to specify 2m− 1 utilities in the bundle form. For the k-additive form

one has to set αT = 1 for every T ⊆ R with |T | = 1. To achieve a utility of one for every

set containing two resources, set αT = −1 for all T ⊆ R with |T | = 2: Let T = {r1, r2}
then α{r1} + α{r2} + α{r1,r2} = 1 + 1 − 1 = 1. Analogously, set αT = 1 for each set

T ⊆ R with |T | = 3. Therefore, αT = (−1)|T |+1 and there are 2m − 1 such non-zero

αT .

In this thesis, a systematic notation is used for the k-additive form, similar to the one

found in Chevaleyre et al. [28, 29]. Let R = {r1, . . . , rm},

uj = α
{r1}
j r1 . α

{r2}
j r2 . α

{r1,r2}r1r2

is the utility of agent aj , 1 ≤ j ≤ n. The coefficients αTj are in front of the related

recources of T . Separated by a “.” the utilities of the next resource or bundle is

given. Hence, assuming R = {r1, r2, r3}, the utilities for agent aj of the last example

are

uj = 1r1 . 1r2 . 1r3 . − 1r1r2 . − 1r1r3 . − 1r2r3 . 1r1r2r3

in this notation.

A reasonable assumption is that agents have a utility of zero for the empty bundle in all

of these representation forms.

An allocation X is a mapping X : A → 2R with X(ai) ∩X(aj) = ∅ for any two agents

ai, aj ∈ A, i 6= j and
⋃
aj∈AX(aj) = R. Hence for 1 ≤ i, j ≤ n, ui(X(aj)) gives the

utility that agent ai has for the set of resources which agent aj receives in allocation

X. As a shorthand for his or her own set of resources, define ui(X) as a shorthand

for ui(X(ai)), 1 ≤ i ≤ n. The set of all possible allocations is denoted by Πn,m, its

cardinality is |Πn,m| = nm, hence the number of possible allocations is exponential in

|R|.

21

Chapter 2. Preliminaries

The next step is to define some kind of measure for the quality of an allocation. In this

thesis there is a focus on social welfare optimization, for which several notions have been

proposed by Chevaleyre et al. [28]. Let (A,R,U) be a MARA setting and X an allocation

for A and R,

� the utilitarian social welfare induced by X is defined as

swu(X) =
∑
aj∈A

uj (X) ,

� the egalitarian social welfare induced by X is defined as

swe(X) = min{uj(X) | aj ∈ A}, and

� the Nash product social welfare induced by X is defined as

swN (X) =
∏
aj∈A

uj (X) .

All of them are criteria of fairness. Utilitarian social welfare measures the sum of all

agents’ utilities and hence measures the average benefit of each agent for the given allo-

cation. Egalitarian social welfare gives the benefit of the agent who is actually worst off.

Increasing his or her individual welfare will be a reasonable aim, while making sure that

no other agent drops behind him or her.

The Nash product is a compromise between the other two. It rises if the agents’ individual

welfares become equal and it will be zero if there is one agent who cannot realize any

utlity at all. Note that negative utilities only make sense for utilitarian and egalitarian

social welfare. For the Nash product consider the case where two agents can realize a

utility of either −20 or of 10. Of course, the case of 10 should be preferred, but the Nash

product is greater if both agents realize −20.

Note that a variety of other notions of social welfare are possible, e.g., maximizing the

utility of the agent on the second position or maximizing the average utility of the agents

on the top three positions. Of course, not all of these notions make sense. In this

thesis, only utilitarian, egalitarian, and Nash product social welfare are studied, as they

are recognized as suitable criteria of fairness in the literature, see, e.g., Chevaleyre et

al. [28].

22

2.4. Computational Social Choice

Another notion of social welfare concerns elitist social welfare, which gives the utility the

agent on top can realize. Although it might be a useful notion in some applications, it is

not covered by this thesis as it is not a suitable criterion of fairness.

A natural way to define related decision problems of maximizing social welfare is due to

Chevaleyre et al. [28].

Utilitarian Social Welfare Optimization (USWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and a value K ∈ Q.

Question: Does there exist an allocation X ∈ Πn,m such that

swu(X) ≥ K?

If the utilities are given in the bundle form, this problem is stated as USWObundle, if the

utilities are given in the k-additive form, this problem is stated as USWOk-additive. If

there is a restriction of the utilities to be defined over the set F, the problem is stated

as F-USWObundle or F-USWOk-additive respectively. Typical choices for F are N, Z,

Q, or simply {0, 1}. Whenever F is omitted in this thesis, F = Q can be assumed for

utilitarian and egalitarian social welfare and F = Q+ for the Nash product social welfare.

Furthermore, note that only the specified utilities are chosen from F. All other utilities are

allowed to be zero, though F does not necessarily include the zero.

Analogously, the related problems regarding egalitarian and Nash product social welfare

are defined.

Egalitarian Social Welfare Optimization (ESWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and a value K ∈ Q.

Question: Does there exist an allocation X ∈ Πn,m such that

swe(X) ≥ K?

Nash Product Social Welfare Optimization (NPSWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and a value K ∈ Q.

Question: Does there exist an allocation X ∈ Πn,m such that

swN (X) ≥ K?

23

Chapter 2. Preliminaries

To indicate the form of the utilities, the shorthands for the egalitarian social welfare

optimization problems are ESWObundle and ESWOk-additive, for the Nash product

NPSWObundle and NPSWOk-additive, respectively. As mentioned above, negative utili-

ties do not make sense in terms of Nash product social welfare, thus NPSWObundle and

NPSWOk-additive are always assumed to be restricted to positive utilities (i.e., to Q+ if

F is omitted).

The related exact versions of these problems are defined as follows.

Exact Utilitarian Social Welfare Optimization (XUSWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and K ∈ Q.

Question: Does it hold that max{swu(X) | X ∈ Πn,m} = K?

Exact Egalitarian Social Welfare Optimization (XESWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and K ∈ Q.

Question: Does it hold that max{swe(X) | X ∈ Πn,m} = K?

Exact Nash Product Social Welfare Optimization (XNPSWO)

Given: A MARA setting (A,R,U), where |A| = |U | = n and |R| = m,

and K ∈ Q.

Question: Does it hold that max{swN (X) | X ∈ Πn,m} = K?

As above, to indicate the way the utilities are given, the shorthands for these problems are

XUSWObundle, XUSWOk-additive, XESWObundle, XESWOk-additive, XNPSWObundle,

and XNPSWOk-additive. Again, a parameter F can be set in front of these problems to

restrict the utility functions.

Regarding complexity results, the 1-additive form is a special case of the k-additive form,

thus NP-completeness for the 1-additive form directly transfers to the k-additive form for

k > 1. The details are stated in Remark 2.8.

Remark 2.8. (Conitzer et al. [40]) 1-additive utilities can be written as k-additive utilities

by setting ui(T) = 0 for all T ⊆ R with 1 < |T | ≤ k.

24

2.4. Computational Social Choice

2.4.1.2. Other Representations of Utilities

One alternative is to use straight-line programs (SLP for short) to represent utilities, see,

e.g., Dunne and Wooldridge [47] or Chevaleyre et al. [28]. An SLP can be seen as a

boolean circuit for each agent. It has m inputs, one for each resource, and several gates.

Each gate has up to two inputs and at least one output4 and is labeled with a boolean

operation ∧, ∨, or ¬. The outputs of the circuit can be interpreted as a binary value.

Therefore, an assignment of the resources coincides with an assignment of true and false

to the m inputs and leads to an output value representing the utility of the related bundle

of resources.

This circuit can also be written in a program-like style. Each line starts with an ascending

line number. The first m lines are the inputs. The gates are represented by the following

lines, where after the line number the related boolean relation is given, followed by the

line numbers related to the inputs of the corresponding gate. It is important, that each

line can access as input only the output of preceding lines. Last, the outputs are given.

The following is an example for two resources R = {r, r′}, where the agent has a utility of

zero for the empty set, a utility of one for each single resource, and a utility of three for

the set containing both resources. Note, that the first output line (i.e., line 6) represents

the value 20 and the second output line (i.e., line 7) represents the value 21 of the binary

interpretation of the utility in this example.

1 INPUT r

2 INPUT r’

3 OR 1 2

4 AND 1 2

5 AND 3 4

6 OUTPUT 3

7 OUTPUT 5

NP-completeness for USWOSLP was proved by Dunne and Wooldridge [47], whereas NP-

completeness for ESWOSLP and NPSWOSLP was proved in Nguyen et al. [90, 93].

There are situations, in which specifying numerical utilities might be somewhat difficult,

e.g., when talking to small children. But it might be possible to let the agents order

the resources according to their value. In this case, one obtains ordinal preferences.

Note, that ordinal preferences have a length linear in the number of resources, when only

4All outputs have to be equivalent.

25

Chapter 2. Preliminaries

single resources are to be ranked. Their length can grow exponentially if also bundles

of resources are allowed to be ranked. A similar framework than in this thesis – except

for the use of ordinal preferences – can be found in the work by Bouveret et al. [16].

Besides the definition of the new framework, results are obtained for two additional

notions of fairness, envy-freeness and Pareto efficiency [58]. They are formally defined

as follows.

Assuming a MARA setting (A,R,U) to be given, an allocation X is

� envy-free if ui(X) ≥ ui(X(aj)) for all ai, aj ∈ A and

� Pareto optimal if there is is no allocation X ′ that Pareto dominates X. An alloca-

tion X ′ Pareto dominates an allocation X if

1. ui(X
′) ≥ ui(X) for all ai ∈ A and

2. ui(X
′) > ui(X) for at least one ai ∈ A.

In other words, an allocation is envy-free, if each agent is at least as happy with his or her

bundle, as he or she would be with any other bundle some agent receives. Thus, no agent

envies another agent. An allocation X ′ Pareto dominates another allocation X if there is

at least one agent who strictly prefers X ′ over X and for all other agents X ′ is at least as

valuable as X. Of course, it is reasonable to choose X ′ in this case.

2.4.2. Voting

Voting does not only occur in political elections, even though this might be its most im-

portant application. But even if a group of friends decides over the location for a dinner or

over which movie to watch, it is an application of voting. Thus, voting occurs regularly in

our life and everyone should know the plurality rule: each voter can approve of one candi-

date and the candidates with the most approvals win the election.

Another application of voting are sports competitions like a multisport race. Each athlete

can be considered as a candidate and each competition can be considered as a ballot over

these candidates. Typically, different points are obtained for different positions, where a

higher score is obtained for a better rank. At the end, the athlete with the highest score

wins the competition. Under weak conditions, this coincides with the concept of scoring

rules as discussed later.

Moreover, a soccer league can be considered as an election, where each team is a candidate

and a head-to-head contest between each pair of candidates takes place. The teams earn

26

2.4. Computational Social Choice

different points for a victory and a tie in these contests. At the end, the team with

the highest score wins the competition. Under weak conditions, this coincides with the

Copelandα voting rule.

In the following, elections are defined formally, different voting rules are introduced, and

several problems of influencing the outcome of an election are discussed.

2.4.2.1. Basics

An election consists of a set of candidates and a list of voters. Typically, the set of

candidates is called C, whereas the list of voters is called V . Thus, an election E is a

pair E = (C, V). Each voter is represented by his or her preferences over the candidates

C. A voting rule (or voting system, election rule, election system, etc.) is a direction

to determine the winner, or a winner, or the winners of an election E. Sometimes the

winner is required to be unique, in these cases he or she is called the unique-winner (or

just the winner). Sometimes several winners are allowed, which is called the co-winner

case; a winner is also called a co-winner in this case.

A preference over the candidates is denoted by > and c1 > c2 means that c1 is preferred

to c2 for two candidates c1, c2 ∈ C. A linear ordering is a binary relation > which is

total and transitive. Total means that for every two candidates c1, c2 ∈ C with c1 6= c2,

either c1 > c2 or c2 > c1. Transitive means that for every three candidates c1, c2, c3 ∈ C
from c1 > c2 and c2 > c3 it follows that c1 > c3. If the linear ordering is asymmetric

as well, it is called strict. Asymmetric means that for each two candidates c1, c2 ∈ C

it is not possible that c1 > c2 and c2 > c1 hold at the same time. In preference-based

voting rules the votes in V are required to be strict linear orderings over the candidates

C.

The voting rules considered in this thesis are defined in the following.

Scoring rules Scoring rules (a.k.a. scoring protocols) are defined by a scoring vector

α ∈ N|C|0 , where αj ≥ αj+1 for 1 ≤ j ≤ |C| − 1.

Each candidate receives a score according to the votes and the scoring vector α by

the formula

Score(c) =
∑

1≤j≤|C|
1≤k≤|V |

αj · δcjk where

δcjk =

 1 if candidate c is on position j in vote k

0 else.

27

Chapter 2. Preliminaries

Informally speaking, for each position of a candidate in a ballot, the related scores

are summed up. The winners are all candidates with the highest score. If there is

only one candidate with this score, he or she is the unique-winner.

In the following an overview over some important scoring rules is given. Note that

in all these definitions, m = |C| is the number of candidates participating in the

election.

� Plurality has the scoring vector

α =
(

1 0 . . . 0
)
,

hence only the candidate in the top position of each vote gets a point. This is

also known as 1-approval.

� Veto (a.k.a. antiplurality, (m− 1)-approval) has the scoring vector

α =
(

1 . . . 1 0
)

and thus, every candidate except the last one in a vote gets a point.

� One generalization of these is k-approval with the scoring vector

α =

(
1 . . . 1︸ ︷︷ ︸

k

0 . . . 0︸ ︷︷ ︸
m−k

)
.

The candidates in the top k positions get one point each.

� Borda (a.k.a. Borda count) can be represented by the scoring vector

α =
(
m− 1 m− 2 m− 3 . . . 2 1 0

)
.

An equivalent scoring vector is α =
(
m m− 1 m− 2 . . . 3 2 1

)
. In

fact, each scoring vector can be transformed into an equivalent one by adding

a constant x to all αi. As a result each candidate gains x · n points and thus,

the winner(s) is/are the same.

� As a real-world example consider the European Song Contest (ESC), in which

the scoring vector

α =
(

12 10 8 7 6 5 4 3 2 1 0 . . . 0
)

is used.

28

2.4. Computational Social Choice

� Another real-world example is the Formula One championship, in which the

scoring vector

α =
(

25 18 15 12 10 8 6 4 2 1 0 . . . 0
)

is used.5

Copeland For any α ∈ Q∩[0, 1], Copelandα is defined as follows. There is a head-to-head

contest between each pair of candidates. If a candidate c1 wins such a head-to-head

contest against a candidate c2, i.e., c1 is more often preferred to c2 by the voters, c1

gets one point, whereas c2 gets zero points. If there is a tie, both candidates get α

points. In the end, all these points are summed up. The winners are the candidates

with the highest overall score. As noted above, if there is only one candidate with

this score, he or she is the unique-winner. In the literature, Copeland0 is sometimes

simply called Copeland, whereas Copeland1 is also known as Llull.

With α = 1/3, this system is used in some sports competitions like soccer leagues,

where each team is a candidate and for the head-to-head contest, each team has to

compete with each other team.

Bucklin/fallback In a Bucklin election, for 1 ≤ ` ≤ m, the level ` score of a candidate

c is the number of voters ranking c among their top ` positions. The Bucklin score

of a candidate c is the smallest number t such that more than half of the voters

rank c somewhere in their top t positions. A Bucklin winner minimizes the Bucklin

score t, while maximizing the level t score. In simplified Bucklin elections [51],

only the Bucklin score t is minimized. Thus, every Bucklin winner is a simplified

Bucklin winner and one or more of the simplified Bucklin winners is/are the Bucklin

winner(s).

In fallback voting, see Brams and Sanver [20], voters may give a partial order where

only the preferred candidates have to be specified. There are two rounds. The first

round is a Bucklin election. If there is no Bucklin winner, which may happen due

to the voters’ partial orders, the candidates with the highest level ` score win the

election where ` is the length of the longest preference order. Therefore, at least

one fallback winner always exists.

5In fact, this vector may vary if not enough cars finish the race or if a race was aborted before the
designated distance was driven.

29

Chapter 2. Preliminaries

Please note that Bucklin voting can be seen as the special case of fallback voting

where all voters give complete linear orders over all candidates. Therefore, com-

plexity results transfers between Bucklin elections and fallback elections.

During this thesis, only simplified Bucklin/fallback elections are considered. There-

fore, in the following simplified Bucklin and simplified fallback voting are named

by Bucklin and fallback voting, respectively.

Ranked pairs At first, create an entire ranking of all candidates. Now, consider a pair

of candidates c1, c2 that has not been considered previously. More precisely, choose

among the remaining pairs one with the highest N(c1, c2) value where N(c, d) is

the number of voters preferring c over d minus the number of voters preferring d

over c. Ties are broken by some tie-breaking rule. Fix the order c1 > c2, unless this

contradicts previous orders already fixed. Repeat until all pairs of candidates have

been considered. A candidate at the top of the ranking is a winner.

Plurality with runoff Another voting rule with two rounds is plurality with runoff. In the

first round, the two candidates with the highest plurality score are determined. In

the second round, the plurality election is held over these candidates two candidates

only. If needed, some tie-breaking rule is applied in both rounds.

Of course, this list is nonexhaustive. For all these voting rules, the problem to determine

a winner for a given election is in P. Note, that there are voting rules where the winner

determination problem is even harder, e.g. the voting rule by Dodgson, whose winner

determination is proved to be Θp
2-hard by Hemaspaandra et al. [68].

All these definitions can be extended to handle weighted voters. In weighted elections,

each voter has a weight wk, 1 ≤ k ≤ |V |. The definitions above apply, except that

each preference is multiplied by the weight of the corresponding voter, i.e., for scoring

protocols replace

Score(c) =
∑

1≤j≤|C|
1≤k≤|V |

αj · δcjk

by

Score(c) =
∑

1≤j≤|C|
1≤k≤|V |

αj · δcjk · wk.

A famous criterion for the fairness of voting rules is the Condorcet criterion. If there is

some candidate c which beats any other candidate in a pairwise contest, then c should

be the winner of the election. He or she is called a Condorcet winner of the election in

30

2.4. Computational Social Choice

this case. Condorcet winners do not exist for every election, but if they do they will be

unique. Not all of the considered voting rules above respect Condorcet winners. Consider

an election with three candidates, i.e., C = {c1, c2, c3} and three voters with preferences

c1 > c2 > c3, c1 > c2 > c3, and c3 > c2 > c1. Obviously, c1 beats c2 and c3 in a head-

to-head contest and thus is the Condorcet winner. On the other hand, if the election is

held with scoring vector α =
(

4 3 0
)

, c2 gets 9 points whereas c1 only gets 8 points

and c1 gets 4 points. Therefore, c2 wins the election. Hence, scoring rules do not respect

Condorcet winners in general [130]. In contrast, Copelandα and ranked pairs respect

Condorcet winners.

Another important fact was considered by Gibbard [61] and Satterthwaite [114] and is

given in the following.

Lemma 2.9. (a.k.a. Gibbard-Satterthwaite-Theorem [61, 114]) There is no preference

based voting rule that fulfills the following properties at the same time if there are at least

three candidates.

1. For every candidate there is a set of votes that makes him win.

2. The voting rule is non-dictatorship.

3. The voting rule is strategy-proof, i.e., it is not manipulable.

4. The voting rule returns a unique-winner.

Therefore, if dictatorships are excluded as well as voting rules in which not all candidates

can be a winner a priori, all remaining voting rules which return a unique-winner are ma-

nipulable. The natural question arises, how the outcome of an election can be influenced

and how hard it is to perform such a manipulation.

To investigate the related problems, some additional definitions are needed. One of them

is the definition of the weighted majority graph [78].

Definition. Let E = (C, V) be an election and recall that N(c, d) is the number of voters

preferring c over d minus the number of voters preferring d over c. The vertex set of

the weighted majority graph coincides with the set of candidates, i.e., there is one vertex

for each candidate in C. For each pair (c, d) of nodes, insert a directed edge from c to d

with weight N(c, d). Note, that N(c, d) = −N(d, c) for all c, d ∈ C, thus it is sufficient

to specify positive edges only.

The unweighted majority graph is defined analogously. Regarding this unweighted graph,

McGarvey showed that for every graph there is a list of preferences that creates it [86].

31

Chapter 2. Preliminaries

Remark 2.10. McGarvey’s construction [86] also applies to weighted majority graphs.

Consider a set C = {c1, . . . , cm} of candidates and add the two votes c1 > . . . > cm and

cm > . . . > c3 > c1 > c2. This increases N(c1, c2) by 2 and decreases N(c2, c1) by 2,

while the weights on the other edges remain unchanged.

2.4.2.2. Influencing the Outcome of an Election

There are several ways to influence the outcome of an election. Different kinds of control,

manipulation, and bribery are known.

Control Control covers a total of 22 problems. There is a distinction between construc-

tive control, defined by Bartholdi et al. [4], i.e., the question whether a distinguished

candidate can be made a winner of an election, and destructive control, defined by

Hemaspaandra et al. [69], i.e., the question whether a distinguished candidate can

be made a loser of the election. They have in common that the control is performed

by some external chair and not by the voters or candidates itself. The eleven types

of control are given in the following.

1. Control by adding candidates is the question, whether the goal can be achieved

by adding some new candidates to the election. There are two different variants

of this problem. For the first one, the number of new candidates is limited,

while for the second one this number is unlimited. Please note, that the

version with an unlimited number of candidates is considered to be deprecated,

therefore there are actually 20 problems to study [67].

2. Control by deleting candidates is the question, whether the goal can be achieved

by deleting some candidates from the election.

3. Control by partition of candidates is the question whether the goal can be

achieved by partioning the set of candidates C into two subsets C1 and C2

with C1∪̇C2 = C. In the first stage the winner(s) of C1 is/are determined

and in the second stage these winner(s) compete(s) with all candidates of C2.

There are two models, ties eliminate (TE, for short) and ties promote (TP, for

short). In the TE model, only the unique-winner from the first stage is allowed

to run against C2; if there are several co-winners they will be eliminated. In

the TP model all winners of the first stage are admitted to the second stage.

4. Control by partition of candidates with runoff is the question whether the goal

can be achieved by partitioning the set of candidates C into two subsets C1

32

2.4. Computational Social Choice

and C2 with C1∪̇C2 = C. Here, there are two elections in the first stage, one

with candidate set C1 and one with candidate set C2. All winners are allowed

to compete in the second stage, the runoff. Again, this can be done in the TP

model as well as in the TE model.

5. Control by deleting voters is the question, whether the goal can be achieved

by deleting some voters from the election.

6. Control by adding voters is the question, whether the goal can be achieved by

adding some new voters to the election.

7. For political election, there are typically electoral districts. By choosing dif-

ferent electoral districts, it might be possible to change the outcome of the

election. Again, this is a kind of control and called control by partition of

voters. Moreover, this kind of control is defined for TP as well as for TE.

Manipulation In manipulation [3], a manipulator tries to influence the outcome of the

election by strategic voting. More precisely, the manipulator tries to ensure that his

favorite candidate wins the election by casting an insincere vote. A generalization

of this problem is coalitional manipulation where a group of manipulators tries to

influence the election [37]. In the same work, weighted elections are considered as

generalization of the unit-weight case. Furthermore, destructive manipulation was

studied by Conitzer et al. [39].

Bribery Bribery assumes that votes can be changed by paying money to the voters.

More precisely, bribery asks whether the outcome of the election can be changed

by paying the voters to cast a modified vote. For the original bribery problem,

the briber has a maximum number of votes he or she can change, see Faliszewski

et al. [53] for more information and complexity results. In $-Bribery, the briber

is equipped with some budget and the voters have different prices. Again, see

Faliszewski et al. [53] for more information.

Related problems are Micro-bribery and $-Micro-bribery, where the briber is not

allowed to change a complete vote at will, but rather is allowed to swap single

preferences in the preference orders of voters [55].

Regarding control, there is a distinction between possible and impossible types of control.

If the specific type of control is impossible, the voting rule is immune against it. Otherwise

it is susceptible. If the voting rule is susceptible, the underlying decision problem can be

NP-hard or solvable in P, assuming P 6= NP. If the problem is NP-hard, the voting rule

33

Chapter 2. Preliminaries

UCM PWTB

X

PWNA

PW Swap Bribery

≤p
m

≤p
m

≤p
m

≤p
m

Figure 2.3.: Hierarchy of possible winner problems [5]

is said to be resistant against this kind of control, if the problem is in P, it is said to be

vulnerable.

For manipulation and bribery, there is typically only the distinction between resistance

and vulnerability. Computational hardness can be considered as protection against ma-

nipulation and bribery, respectively. Note that a destinction between immune and sus-

ceptible voting rules does not make sense because of Lemma 2.9.

For further reading, see also the work by Faliszewski et al. [56].

2.4.2.3. Possible Winner Problems

After defining the general field of voting, have a closer look at specific problems. At first,

consider the Possible Winner problem, defined by Konczak and Lang [75]. It is a gener-

alization of manipulation, see Chapter 2.4.2.1, and defined as follows.

E-Possible Winner

Given: An election (C, V) with a list of V given as partial orders and

a distinguished candidate c ∈ C.

Question: Can the partial orders be extended to linear orders such that c

is the unique-winner of the election held under voting rule E?

Analogously, the problem E-Possible CoWinner is defined by the question, whether c

can be made a winner of this election by extending the partial votes to linear orders. If

the voting rule E is clear from the context, it can be omitted.

A hierarchy of possible winner problems is given in Figure 2.3. The problems in this

Figure are

34

2.4. Computational Social Choice

� UCM is the unweighted coalitional version of the manipulation problem of Chap-

ter 2.4.2.2.

� PWTB is short for the Possible Winner Problem with Truncated Bal-

lots [7]. In this problem, the preferences of a voter are not necessarily strict linear

orders.

� PWNA is short for the upcoming problem Possible Winner with Respect to

the Addition of New Alternatives.

� PW is short for the problem Possible Winner defined above.

� Swap Bribery [48] is defined by an election E = (C, V), swap-bribery prices π, a

budget B, a distinguished candidate c ∈ C, and the question whether it is possible

to make c win the election by applying a sequence of swaps in the votes where the

sum of the prices is lower than B.

Therefore, as shown in Figure 2.3, complexity results directly transfer between these

problems according to ≤p
m .

Early complexity results concerning PW and PWNA, respectively, are due to Konczak

and Lang [75], Xia and Conitzer [77, 126], and Xia et al. [129].

Another interesting family of problems is related to the possible winner problem by adding

new candidates to an election. The linear orders of the voters have to be extended in this

case to cover the new candidates as well. Therefore, Chevaleyre et al. [32] defined the

PWNA-problem as follows.

E-PWNA

Given: An election E = (C, V) with the set of candidates

C = {c1, . . . , cm}, a list of votes V = (v1, . . . , vn) that are

linear orders over C, a set C ′ of new candidates, and a

distinguished candidate c ∈ C.

Question: Is there an extension of the votes in V to linear orders over

C∪̇C ′ such that c is the winner of the election held under

voting rule E?

The related co-winner problem is defined analogously.

35

Chapter 2. Preliminaries

E-PcWNA

Given: An election E = (C, V) with the set of candidates

C = {c1, . . . , cm}, a list of votes V = (v1, . . . , vn) that are

linear orders over C, a set C ′ of new candidates, and a

distinguished candidate c ∈ C.

Question: Is there an extension of the votes in V to linear orders over

C∪̇C ′ such that c is a winner of the election held under voting

rule E?

Note, that the possible winner problem with new alternatives is easy to solve, if the

number of new candidates is unbounded [8]. Of course, both problems can be considered

for unweighted and for weighted elections. E can be omitted for better readability, if it

is clear from the context which voting rule to use.

Furthermore, another family of problems can be studied. Consider a weighted election

and the uncertainty to be in the weights itself. Thus, define a problem Possible Winner

with Uncertain Weights [9].

E-PcWUW-F

Given: An election (C, V), V = V0∪̇V1, where all votes in V1 have

weight one and the weights of the votes in V0 are not specified

yet and weight zero is allowed for them. Furthermore, a

designated candidate c ∈ C is given.

Question: Is there an assignment of weights wi ∈ F ∪ {0} to the votes vi

in V0 such that c is a winner of the election (C, V0 ∪ V1) held

under voting rule E if vi’s weight is wi for 1 ≤ i ≤ |V0|?

For this first variant of this problem, there is no restriction on the weights. Thus define

a second variant of this problem, where the sum of the weights is bounded by some given

value.

36

2.4. Computational Social Choice

E-PcWUW-bw-F

Given: An election (C, V0∪̇V1) with a distinguished candidate c ∈ C,

as in the definition of E-PcWUW-F. Additionally, a bound B

for the weights in V0.

Question: Is there an assignment of weights wi ∈ F ∪ {0} to the votes vi

in V0 such that
∑|V0|

i=1 wi ≤ B and c is a winner of the election

(C, V0 ∪ V1) held under voting rule E if vi’s weight is wi for

1 ≤ i ≤ |V0|?

Another possibility is to give ranges from which the weights may be chosen. This variant is

defined as Possible Winner with Uncertain and Restricted Weights

E-PcWUW-rw-F

Given: An election (C, V0∪̇V1) with a distinguished candidate c ∈ C,

like in the definition of E-PcWUW-F. In addition, intervals

Ri ⊆ F for the weights in V0.

Question: Is there an assignment of weights wi ∈ Ri to the votes vi in V0

such that c is a winner of the election (C, V0 ∪ V1) held under

voting rule E if vi’s weight is wi for 1 ≤ i ≤ |V0|?

The notions of bounded weights and restricted weights may be combined to obtain the

following problem.

E-PcWUW-bw-rw-F

Given: An election (C, V0∪̇V1) with a distinguished candidate c ∈ C,

like in the definition of PcWUW. Furthermore, intervals

Ri ⊆ F for the weights in V0 as well as a bound B.

Question: Is there an assignment of weights wi ∈ Ri to the votes vi in V0

such that
∑|V0|

i=1 wi ≤ B and c is a winner of the election

(C, V0 ∪ V1) held under voting rule E if vi’s weight is wi for

1 ≤ i ≤ |V0|?

Reasonable choices for F are naturals, i.e., F = N, or rational numbers, i.e., F = Q,

both restricted to nonnegative values. Of course, other choices can be of interest, but

are not studied in this thesis. Furthermore, note that the choice F = {0, 1} for example

is covered by PcWUW-rw-N where all intervals are equal. Please also note that a

37

Chapter 2. Preliminaries

weight of zero is allowed for the weights in the definition of PcWUW and PcWUW-bw.

Therefore, these problems are related to control by adding voters, see Chapter 2.4.2.2, by

choosing the weights from {0, 1} only. The case V0 = ∅ is not excluded in the definition

of the problem. Thus, the definitions also cover the ordinary unit-weight winner problem

for E .

All these problems can be defined for the unique-winner case by replacing “a winner”

by “the winner” in the question. The problems are called PWUW instead of PcWUW

then.

Another possibility for the uncertainty is in the voting system. It is possible to define

a variant of the possible winner problem, where the voting system is unknown until all

votes have been cast. It will be chosen from a family of voting systems, e.g., it will be a

scoring rule with unknown scoring vector or it will be a Copelandα election with unknown

parameter α.

The problems are formally defined as follows [121, 8].

V-PWUVS

Given: An election E = (C, V) with the set of candidates C, a list of

voters V consisting of linear orders over C, and a

distinguished candidate c ∈ C.

Question: Is there a voting rule E in the given class V of voting rules

such that c is the winner of the election held under E?

V-PcWUVS

Given: An election E = (C, V) with the set of candidates C, a list of

voters V consisting of linear orders over C, and a

distinguished candidate c ∈ C.

Question: Is there a voting rule E in V such that c is a winner of the

election held under E?

2.4.3. Preference Aggregation

Preference aggregation is a wide field that has been intensely studied by various sci-

entific communities, across various areas, ranging from social choice theory and voting

theory (see, e.g., the bookchapter by Brams and Fishburn [19]) as subfields of political

sciences and economics to the emerging field of computational social choice (see, e.g., the

38

2.4. Computational Social Choice

bookchapters by Brandt et al. [22], Faliszewski et al. [56], and Baumeister et al. [6], and

the book by Rothe et al. [113]).

In particular, methods of preference aggregation are applied in multiagent decision-

making (see, e.g., Chapter 9 in the book by Shoham and Leyton-Brown [116] and Chap-

ter 12 in the book by Wooldridge [124]). Unlike the methods proposed in this thesis,

which assumes cardinal preferences (scores) to be aggregated, social choice theory and

computational social choice commonly assume ordinal preferences, i.e., linear rankings of

the alternatives to be aggregated to a joint ranking of society (be it a society of humans

in a political context or of software agents in a multiagent system).

2.4.3.1. Basics

Like in voting (Chapter 2.4.2), a list of n agents and a set of m alternatives are given, but

this time the alternatives are denoted as A = {a1, a2, . . . , am}. Like in voting, each agent,

1 ≤ j ≤ n, has a linear order Pj over the m alternatives. Therefore, each agent is identified

by his or her preferences. A preference profile is a total ordering of the m alternatives.

It may be represented by a permutation of {1, . . . ,m} or as

Pj : aj1 > aj2 > . . . > ajm

with ajk 6= ajl for k 6= l. Typically, ties are not allowed in such a profile, see, e.g.,

the definition of strict linear orders in voting (Chapter 2.4.2.1). Usually, the list of all

preferences is called P = 〈P1, . . . , Pn〉.

Now, the task is to find some aggregation function

f : P 7→ P ∗

where P ∗ is called the collective preference relation.

If the set of agents is the same as the set of alternatives, i.e., the agents have to judge

over themsevles, this setting is also known as ranking system [1].

There is a significant body of existing papers in the area of preference aggregation, i.e., on

the question of how to aggregate individual preferences into a common, global ranking.

Some of these papers use related estimators in different settings. For example, Conitzer

and Sandholm [38], Conitzer, Rognlie, and Xia [35], and Xia et al. [128, 127] apply

maximum likelihood estimation to model the “noise” in voting. Relatedly, Pini et al. [102]

study the issue of aggregating partially ordered preferences with respect to Arrovian

39

Chapter 2. Preliminaries

impossibility theorems. However, their framework differs from the model used here.

They consider ordinal preferences, whereas the problem of peer reviewing, considered in

this thesis, is commonly based on scores, i.e., on cardinal preferences. Note that cardinal

preferences are more expressive than ordinal preferences, as they also provide a notion of

distance.

The topic of aggregating the scores in reviewing scientific papers is known as the rating

problem (as explained in Chapter 5) and has also been investigated intensely, although

from other angles and using different methods than the proposed methods. For exam-

ple, Douceur [45] encodes the aggregation problem into a corresponding problem on di-

rected multigraphs and focuses on rankings (i.e., ordinal preferences) rather than ratings

(i.e., cardinal preferences obtained by assigning review scores). By contrast, Haenni [65]

presents an algebraic framework to study the problem of aggregating individual scores.

Mattern [85] discusses the remotely related problem of evaluating and ranking individ-

ual researchers as well as research institutions, in particular those in computer science,

based on bibliometric data (such as citation indices), focusing on the arising problems

and pitfalls.

Unlike the approaches used in the above papers, the models in this thesis use methods of

analysis of variance from the field of statistics (see the book by Koch [74]). The setting

is called two-way classification there, where one “way” relates to reviewers and the other

to papers. The classical statistical approach from the field of linear models is adapted

here. This leads to fairer overall scores for the papers, where “fairer” in a technical

sense refers to the fact that the proposed methods lead to unbiased estimators for certain

model parameters (see Chapter 5.2.1 and Chapter 5.2.2 for details). At the same time,

the methods also allow to evaluate the reviewers in parallel.

The papers by Lauw et al. [79, 80] tackle the same problem as in this thesis, yet with

quite a different approach. They apply a so-called “differential model,” which is an ad-hoc

nonlinear model. Their model includes an unknown model parameter α, which appears

not to be statistically estimable. No random errors occur in this model, although in real

review processes such effects are well conceivable to play a role.

Finally, rating is also a classical problem of psychological testing and assessment, see,

e.g., the books by Anastasi and Urbina [2], Cohen and Wserdlik [34], and Pedhazur and

Pedhazur Schmelkin [101]. The issues of leniency and central tendency are well known

in psychology: it is often observed that individuals have a tendency to place objects in

the middle of the scale and to avoid extreme positions.

40

Chapter 3.

Complexity of Multiagent Resource

Allocation

This chapter presents selected results in the context of Multiagent Resource Allocation.

For an introduction to this field, see Chapter 2.4.1. Proofs regarding the bundle form

can be found in Chapter 3.2, whereas proofs for the k-additive form are presented in

Chapter 3.3.

The following real-world example, which is taken from the German textbook by Rothe et

al. [113], illustrates the difference between these two representation forms.

Example 3.1 (Bundle form vs. k-additive form, see Rothe et al. [113, 96]). Suppose an

auctioneer has ten pairs of shoes: R = {s`1, sr1, s`2, sr2, . . . , s`10, s
r
10}, where the super-

scripts ` and r, respectively, are used for a left and a right shoe, and shoes with the

same subscript are matching pairs. It is natural to assume that a matching shoe pair is

of higher value to an agent than a single shoe. That is why agent a1 has the following

utility function:

(a) u1(∅) = 0;

(b) if B with ∅ 6= B ⊂ R is a nonempty bundle containing x matching pairs of shoes

and y single shoes (but not all ten pairs of shoes), then u1(B) = 10 · x+ y; and

(c) u1(R) = 80 (i.e., for all ten pairs of shoes, agent a1 expects some discount and is

not willing to pay the 100 dollars that would result from the formula in (b) in this

case).

Therefore, u1({s`1, sr1, s`3, sr3, s`4, sr5, s`9}) = 10 · 2 + 3 = 23. Since the bundle form is

fully expressive (see Chapter 2.4.1.1), u1 can be represented that way. But to actually

represent u1 in the bundle form, one would have to list all 220 − 1 = 1, 048, 575 pairs

(B, u1(B)) with B 6= ∅.

41

Chapter 3. Complexity of Multiagent Resource Allocation

By contrast, in the 2-additive form, it is enough to determine the constants αT1 for all

bundles T ⊆ R with |T | ≤ 2:

αT1 =


0 if T = ∅
1 if |T | = 1

0 if T = {sai , sbj} for a, b ∈ {`, r} and 1 ≤ i, j ≤ 10 with i 6= j

8 if T = {s`i , sri } for some i, 1 ≤ i ≤ 10.

For example, one obtains for the bundle B = {s`1, sr1, s`3, sr3, s`4, sr5, s`9}:

u2-additive
1 (B) =

∑
T⊆B, ‖T‖≤2

αT1 = α∅1 +
∑

T⊆B, ‖T‖=1

αT1 +
∑

T⊆B, ‖T‖=2

αT1

= 0 + 7 +
∑

T⊆B, T={sai , sbj}, a,b∈{`,r}, i 6=j

αT1 +
∑

T⊆B, T={s`i , sri }

αT1

= 0 + 7 + 0 + 8 + 8 = 23 = u1(B).

However, for the bundle R with all pairs of shoes, one obtains:

u2-additive
1 (R) =

∑
T⊆R, |T |≤2

αT1 = α∅1 +
∑

T⊆R, |T |=1

αT1 +
∑

T⊆R, |T |=2

αT1

= 0 + 20 + 10 · 8 = 100 6= 80 = u1(R).

Only if k = 20, it is possible to fully represent u1 in the k-additive form. Therefore, one

has to evaluate the pros and cons of the disadvantage that u2-additive
1 differs from u1 for one

bundle against the advantage that it is enough to give only
∑2

i=0

(
20
i

)
= 1+20+190 = 211

coefficients αT1 for the bundles T ⊆ R with |T | ≤ 2.

The proofs presented in this chapter have already been published the Proceedings of the

9th International Joint Conference on Autonomous Agents and Multiagent Systems [106]

and the Journal of Autonomous Agents and Multi-Agent Systems [93].

3.1. Results and Related Work

Chevaleyre et al. wrote a comprehensive survey [28], which is a very good introduction

into this field. Unfortunately, it was written in 2006 and thus recent work is not in-

cluded.

First results are due to Chevaleyre et al. [29], who proved NP-completeness for the prob-

lems USWOBundle and USWOk-additive as well as coNP-completeness for the problem

42

3.1. Results and Related Work

of verifying that an allocation has maximal utilitarian social welfare for both represen-

tations. One open question in the survey [28] was ESWOk-additive, which was solved

by Bouveret et al. [18]. Unfortunately, their work is a short paper only and does not

include any proof. A proof is stated in Bouveret’s Ph.D. thesis [15], which is written in

French. This result also immediately follows from the work of Lipton et al. [83], who

actually investigated the problem of envy-freeness. A suitable proof can also be found in

Appendix A.2 of this thesis. The related problem of the bundle form, ESWOBundle, is

stated as Theorem 3.2. The problem is NP-complete for both representation forms. An

obvious step was to study Nash product social welfare as well. The decision problems

for the Nash product are NP-complete too, proved in Theorem 3.5 for the bundle form

and stated in Corollary 3.11 for the k-additive form. Independently, NP-completeness of

NPSWObundle was shown by Ramezani and Endriss [104] – their work appeared in the

same year as [106].

The next step is to investigate the related exact social welfare optimization problems,

XUSWObundle and XUSWOk-additive, which were conjectured to be DP-complete in

Chevaleyre et al. [28]. These conjectures are solved in the affirmative in Theorem 3.6

for the bundle form and Theorem 3.12 for the k-additive form. Furthermore, DP-

completeness results can be achieved for the exact egalitarian social welfare problems;

Theorem 3.8 shows DP-completeness of XESWObundle and Theorem 3.15 shows DP-

completeness of XESWOk-additive. Unfortunately, Lemma 2.4 used for XUSWObundle

and XESWObundle was not suitable to prove DP-completeness of XNPSWObundle or

XNPSWOk-additive. Nevertheless, these problems are DP-complete as well as proved in

Nguyen et al. [94] using other techniques.

Although NP-complete in general, some of these problems have restricted versions which

are no longer hard to solve, e.g. USWO1-additive is in P as well as ESWO1-additive

and NPSWO1-additive are in P if |R| = |A| (see Chevaleyre et al. [30, 63, 96, 95]).

Furthermore, all variants of ESWO and NPSWO are trivial to solve, if |R| < |A| and

ui(∅) = 0 for all agents ai ∈ A.

A summary of the general complexity results is given in Table 3.1.

As mentioned above, the decision problem underlying the problem of finding envy-free

allocations with additive utilities was studied by Lipton et al. [83]; it is proved to be NP-

complete. The combination of envy-freeness and Pareto optimality was studied in the

work by Bouveret and Lang [17]. The related problem whether there is an allocation which

is Pareto optimal (“efficient”) and envy-free, is called EEF by them. Their representation

of the utilities are based on propositional formulas. They obtained Σp
2-completeness for

43

Chapter 3. Complexity of Multiagent Resource Allocation

Problem Complexity Reference

USWObundle NP-complete [30]
ESWObundle NP-complete Theorem 3.2
NPSWObundle NP-complete Theorem 3.5
XUSWObundle DP-complete Theorem 3.6
XESWObundle DP-complete Theorem 3.8
XNPSWObundle DP-complete [94]
USWOk-additive, k ≥ 2 NP-complete [30]
ESWOk-additive, k ≥ 1 NP-complete [83], [18], [15], [106]
NPSWOk-additive, k ≥ 1 NP-complete Corollary 3.11
XUSWOk-additive, k ≥ 2 DP-complete Theorem 3.12
XESWOk-additive, k ≥ 2 DP-complete Theorem 3.15
XNPSWOk-additive, k ≥ 3 DP-complete [94]

Table 3.1.: Complexity results for MARA

the general problem. Completess is shown regarding NP, Πp
2, Σp

2, DP, coDP for restricted

versions and related problems. Furthermore, membership in P and Θp
2 is shown for

restricted and related problems.

3.2. Social Welfare Optimization with Utilities as

Bundles

As mentioned in Chapter 2.4.1.1, a reasonable convention is that all agents have a utility

of zero for the empty bundle of resources (i.e., uj(∅) = 0 for all agents aj ∈ A). In this

chapter you may find dummy agents who have a utility of one or two for this empty

set. Of course, this is not a problem, since these MARA-settings can be transformed

into equivalent ones, where every agent has a utility of zero for the empty set, as follows.

Assume a given MARA setting (A,R,U) with an agent ã ∈ A, who has a non-zero utility

of ξ for the empty set. Now, one can deal with this issue by defining a new resource

r̃ 6∈ R and adjusting the utilities as follows. Set the utility of agent ã for the empty set of

resources to zero and set the utility of agent ã for the single resource r̃ to ξ. Furthermore,

add r̃ to all bundles, to which agent ã has a non-zero utility without changing this utility.

This ensures ã to realize a utility of ξ by not receiving any of the “old” resources. Since r̃

is new, no other agent can have a non-zero utility to r̃ and thus, ã will always receive the

dummy resource r̃. Finally, add r̃ to the set of resources, thus define R̃ = R∪ {r̃}. Note,

that this construction is only valid if the nonzero utility ξ is greater than zero – this is

44

3.2. Social Welfare Optimization with Utilities as Bundles

the case in all proofs presented in this chapter. Therefore, to simplify the proofs, in this

chapter a utility unequal to zero is allowed for the empty set.

As mentioned in Chapter 3.1, Chevaleyre et al. [28] conjectured that ESWObundle is NP-

complete. Theorem 3.2 solves this conjecture in the affirmative.

Theorem 3.2. ESWObundle is NP-complete.

Proof. Membership in NP is easy to see: Given an instance (A,R,U, κ), where (A,R,U)

is a MARA setting and κ ∈ Q, one can nondeterministically guess an allocation, de-

terministically compute the minimum of the agents’ utilities in polynomial time, and

compare it with κ.

Hardness can be shown via various reductions. As an anonymous reviewer at AA-

MAS 2010 [106] suggested, a simple reduction can be made from the NP-complete prob-

lem Exact Cover [72], see Appendix A for the definition of Exact Cover and the

alternative proof.

But this reduction has a disadvantage: it can be used to show NP-completeness, but it is

not suitable to show DP-completeness for XUSWObundle in Theorem 3.6 or XESWObundle

in Theorem 3.8.

Thus, the proof via a reduction from 3-SAT, one of the standard NP-complete problems,

is presented here. 3-SAT is defined as follows [72, 60].

3-SAT

Given: Given a boolean formula ϕ in conjunctive normal form with at

most three literals per clause.

Question: Is there a truth assignment to the variables of ϕ that makes ϕ

evaluate to true?

Let ϕ be an instance of 3-SAT. Let C = {c1, c2, . . . , cn} be the set of the clauses of ϕ.

Without loss of generality, ϕ is assumed to contain only variables that occur both as a

positive and a negative literal. Else, if there is a variable that does not occur in both

ways, the clauses containing this variable can always be satisfied, and thus deleting these

clauses does not affect the satisfiability of the formula. Furthermore, ϕ is assumed to

contain at least two clauses (i.e., n ≥ 2) and no clause contains any variable twice (be it

as a positive or as a negative literal).

45

Chapter 3. Complexity of Multiagent Resource Allocation

Example 3.3. Assume the given boolean formula ϕ to be

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ ¬x3).

In this formula x1 only occurs as a positive literal and deleting x1 results in an equivalent

formula. In the third clause x2 occurs twice as a positive literal, thus one of these

occurrences can be deleted. In the last clause x3 occurs as a positive as well as a negative

literal. Hence, this clause is always be satisfiable and can be deleted. The result is an

equivalent formula

ϕ′ = (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x2 ∨ ¬x3).

Obviously, ϕ is satisfiable if and only if ϕ′ is.

Let there be one agent aj for each clause cj of ϕ and an additional dummy agent a0,

resulting in a set A = {a0, a1, . . . , an} of agents.

The setR of resources depends on the literals of the clauses as follows. For each occurrence

of a literal in a clause and each occurrence of the negation of the same literal in a clause

to the right, there is a new resource. In more detail, a new resource is defined for each

pair ((`, s), (¬`, t)) exactly if either ` or ¬` is a variable of ϕ and 1 ≤ s < t ≤ n. Here,

(, j) indicates the occurrence of literal  in clause cj .

In the next step the utilities of the resources are to be defined. The dummy agent a0

has a utility of one for the empty set of resources and a utility of n = |C| for the bundle

containing all resources. Please note that the utility for this bundle of all resources can

be set to any positive integer value in this proof. However, in the upcoming proof of

Theorem 3.6, which reuses and extends this construction, a0 is needed to have a utility

of n = |C| for this bundle.

Now the utilities of the “real” agents aj , 1 ≤ j ≤ n, are defined. Regarding the empty

set of resources, each of these agents assigns a utility of zero to it. All other utilities are

set according to the clauses of the boolean formula ϕ.

For each literal ` or ¬` in cj , agent aj forms a bundle with all pairs ((`, s), (¬`, t)) where

either s = j or t = j, and assigns utility one. Note that if the negated literal ¬` occurs

only once, the corresponding bundle contains only a single resource. Furthermore, if

the clause contains at least two literals then agent aj assigns a utility of one to each

combination of two of these bundles, and, analogously, if the clause contains three literals

then agent aj assigns a utility of one to the combination of all three bundles. Since each

46

3.2. Social Welfare Optimization with Utilities as Bundles

clause contains at most three literals, each agent assigns nonzero utilities to at most seven

nonempty bundles.

In addition, let the parameter κ = 1. This forms the instance (A,R,U, κ) for ESWObundle.

It is easy to see that (A,R,U, κ) can be computed in polynomial time from ϕ, since there

are n+ 1 agents and each clause consists of at most three variables and thus each of the

agent forms utilities for at most seven nonempty bundles.

Note that each truth assignment to the variables of ϕ corresponds to a valid assignment

of the resources in R to the agents aj , 0 ≤ j ≤ n, as follows. If ` is a literal in clause

cj that is true under a given truth assignment, then agent aj is assigned the bundle

consisting of all resources ((`, j), (¬`, t)) with j < t and ((¬`, s), (`, j)) with s < j and

the dummy agent a0 receives the empty set. If none of the literals in clause cj is true

under a given truth assignment (i.e., clause cj is evaluated to false and hence ϕ is not

satisfied), then agent aj does not receive any resource. Without loss of generality, in this

case all resources can be given to the dummy agent a0, because only the welfare of the

agent who is worst off matters and there is an agent who does not get any resource at

all. The following example illustrates the correspondence between the truth assignment

of a boolean formula ϕ and an allocation X for a MARA setting (A,R,U, κ) that is

constructed according to the presented reduction.

Example 3.4. Recall the simplified formula

ϕ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2)

from Example 3.3 with renamed variables. A truth assignment of ϕ is x1 = > and x2 = ⊥.

According to the present reduction, there are 4 agents: a0, a1, a2, and a3 as well as m = 4

resources which are defined as follows:

r1 = ((x1, 1), (¬x1, 2)),

r2 = ((x2, 1), (¬x2, 2)),

r3 = ((x2, 1), (¬x2, 3)), and

r4 = ((¬x1, 2), (x1, 3)).

The utlities of the agents are given in Table 3.2 and are set as follows. r1 is derived from

x1 in the first clause, thus a1 has a utility of one for the bundle containing r1 only; r2 and

r3 are derived from x2 in clause c1, therefore agent a1 has a utility of one for the bundle

{r2, r3}. In addition, agent a1 has a utility of one for the bundle which contains r1, r2,

and r3. Agent a2’s utilities are derived from the resources whose origin is in the second

47

Chapter 3. Complexity of Multiagent Resource Allocation

clause. Hence, a2 has a utility of one for the bundle {r1, r4} because these resources are

derived from ¬x1 in clause c2 as well as a utility of one for the bundle which contains

only resource r2. Again, there is a utility of one for the bundle of all these resources,

{r1, r2, r4}. The utilities of agent a3 are set in the same way: a utility of one for the

bundle {r3}, a utility of one for the bundle {r4}, and a utility of one for the bundle

{r3, r4}. Recall the truth assignment x1 = > and x2 = ⊥. Thus, the first clause is

satisfied by x1, hence the resource r1, which is derived from x1 in the first clause, is given

to agent a1. The second clause is satisfied by ¬x2, the derived resource from ¬x2 in this

clause is r2, which is given to agent a2. The third clause is satisfied by x1 as well as by

¬x2, the related resources are r3 and r4. Hence, agent r3 receives the bundle {r3, r4}.
Therefore all agents can realize a utility of one since the dummy agent a0 can realize his

or her utility by the empty set.

Agent Bundles with utilities

a0 (∅, 1) ({r1, r2, r3, r4}, 3)
a1 ({r1}, 1) ({r2, r3}, 1) ({r1, r2, r3}, 1)
a2 ({r1, r4}, 1) ({r2}, 1) ({r1, r2, r4}, 1)
a3 ({r3}, 1) ({r4}, 1) ({r3, r4}, 1)

Table 3.2.: Utilities of the agents related to formula ϕ

For an example of a boolean fomula which is not satisfiable, see Example 3.7 in the proof

of Theorem 3.6.

It remains to show that there exists an allocation whose egalitarian social welfare is κ = 1

if and only if ϕ is satisfiable.

From left to right Suppose there exists an allocation X with swe(X) = 1. So a0 is

assigned the empty bundle with utility one. If all resources are allocated according

to X, then a truth assignment to the variables of ϕ that makes ϕ true can be

obtained as follows. If agent aj , 1 ≤ j ≤ n, is assigned resource ((`, s), (¬`, t)) with

either s = j or t = j then literal ` can be set so as to satisfy clause cj . Thus, if

agent aj receives at least one nonempty bundle, clause cj is satisfied. Note that

the assignment of pairwise disjoint bundles does not allow to assign the same value

to both, the literal ` and its negation ¬`. Since swe(X) = 1, it follows from the

definition of egalitarian social welfare that even the agent that among a1, . . . , an is

worst off must receive a nonempty bundle. Thus, all clauses of ϕ are satisfied under

the truth assignment corresponding to X.

From right to left If ϕ is satisfiable, there is a truth assignment satisfying all clauses cj ∈
C. In the corresponding allocation X of bundles of resources, each of the agents

48

3.2. Social Welfare Optimization with Utilities as Bundles

a1, . . . , an receives a nonempty bundle and so can realize a utility of one. Thus, a0

is assigned the empty bundle with utility one, too. So swe(X) = 1.

This proves Theorem 3.2. q.e.d.

Analogously to Theorem 3.2, one can show that NPSWObundle is NP-complete.

Theorem 3.5. NPSWObundle is NP-complete.

Proof. Recall the proof of Theorem 3.2 and the definition of the Nash product. Obviously,

if each agent can realize a utility of at least one, the product of their utilities is at least one.

On the other hand, if there is an agent whose utility is zero, the product of all utilities

will become zero. Thus, it is possible to construct a MARA setting (A,R,U, κ) with

κ = 1 from a boolean formula ϕ such that (A,R,U, κ) is an instance of NPSWObundle if

and only if ϕ is satisfiable. q.e.d.

Another conjecture of Chevaleyre et al. [28] was DP-completeness of the social welfare

optimization problem XUSWObundle. Theorem 3.6 solves this conjecture in the affirma-

tive. Again, the proof of Theorem 3.2 is useful. Furthermore, recall Wagner’s tool, which

was given in Lemma 2.4.

Theorem 3.6. XUSWObundle is DP-complete.

Proof. To prove membership of XUSWObundle in DP, consider the condition

max{swu(X) | X ∈ Πn,m} = κ, (3.1)

where κ ∈ Z is assumed. This assumption can be made without loss of generality, because

one can multiply all utilities and κ by their least common multiple. Note that (3.1) is

true if and only if

(i) (∃X ∈ Πn,m) [swu(X) ≥ κ] and

(ii) (∀X ∈ Πn,m) [swu(X) < κ+ 1].

Since (i) is an NP predicate and (ii) is a coNP predicate, one can write XUSWObundle

as

C ∩D

for suitable NP sets C and D. Thus, XUSWObundle is in DP.

49

Chapter 3. Complexity of Multiagent Resource Allocation

To show DP-hardness of XUSWObundle, Wagner’s tool (Lemma 2.4) is applied with

A = 3-SAT and B = XUSWObundle.

Recall the construction presented in the proof of Theorem 3.2 and note that the maximum

utilitarian social welfare is exactly κ = n+ 1 if ϕ is satisfiable (because each of the n+ 1

agents can realize a utility of exactly one in that case), and is κ = n otherwise: Either

one agent ai, 1 ≤ i ≤ n, cannot realize any bundle at all, whereas the other agents aj ,

0 ≤ j ≤ n and i 6= j, will realize a utility of exactly one each, or agent a0 can realize

a utility of n and all other agents cannot realize any utility at all. For this reason, the

utility of the dummy agent a0 for the bundle containing all resources was set to the

number of clauses n. See also the following example, which is taken from [106]. It shows

the smallest non-trivial boolean formula which is not satisfiable.

Example 3.7. Consider the boolean formula

ϕ = (v1 ∨ v2) ∧ (¬v1 ∨ v2) ∧ (v1 ∨ ¬v2) ∧ (¬v1 ∨ ¬v2).

Since this formula has n′ = 4 clauses, one gets n = 4 + 1 = 5 agents: a1, a2, a3, and

a4 as well as one dummy agent a0. According to the proof one has to construct m = 8

resources r1, r2, r3, r4, r5, r6, r7, and r8, which are defined as follows:

r1 = ((v1, 1), (¬v1, 2)), r5 = ((¬v1, 2), (v1, 3)),

r2 = ((v1, 1), (¬v1, 4)), r6 = ((v2, 2), (¬v2, 3)),

r3 = ((v2, 1), (¬v2, 3)), r7 = ((v2, 2), (¬v2, 4)),

r4 = ((v2, 1), (¬v2, 4)), r8 = ((v1, 3), (¬v1, 4)).

In the next step the utilities of the agents are to be constructed. Recalling the proof of

Theorem 3.2, the dummy agent a0 has a utility of one for the empty set and a utility of

n′ for the set containing all resources. The utilities for all other bundles are zero. The

utilities of the other agents are set according to the clauses of ϕ: r1 and r2 are derived

from v1 in the first clause, thus a1 has a utility of one for the bundle {r1, r2} – r3 and

r4 are derived from v2 in the first clause, therefore agent a1 has a utility of one for the

bundle {r3, r4}. To allow a1 to fulfill both variables in this clause, it has a utility of one

for the bundle containing all these resources, hence a1 has a utility of one for the bundle

{r1, r2, r3, r4}. For all other bundles, its utility is zero. Applying this construction also

to the other agents, Table 3.3 shows all non-zero utilities. Note, that it is not possible to

distribute the bundles in a way such that each agent can receive a bundle for which he

or she has a nonzero utility. Hence, the maximal utilitarian social welfare of this setting

is n′ − 1 = n = 4.

50

3.2. Social Welfare Optimization with Utilities as Bundles

Agent Bundles with utilities

a0 (∅, 1), ({r1, r2, r3, r4, r5, r6, r7, r8}, 4)
a1 ({r1, r2}, 1), ({r3, r4}, 1), ({r1, r2, r3, r4}, 1)
a2 ({r1, r5}, 1), ({r6, r7}, 1), ({r1, r5, r6, r7}, 1)
a3 ({r5, r8}, 1), ({r3, r6}, 1), ({r3, r5, r6, r8}, 1)
a4 ({r2, r8}, 1), ({r4, r7}, 1), ({r2, r4, r7, r8}, 1)

Table 3.3.: Utilities of the agents related to formula ϕ

Now, to come back to the application of Lemma 2.4, let ϕ and ψ be two given boolean

formulas in conjunctive normal form, where ϕ has n(ϕ) clauses and ψ has n(ψ) clauses.

Furthermore, assume that ϕ and ψ have disjoint variable sets. According to the hypothesis

of Lemma 2.4, assume that if ψ is satisfiable then so is ϕ.

Applying the same construction as in the proof of Theorem 3.2 to both, ϕ and ψ results

in two MARA settings

� (A(ϕ), R(ϕ), U (ϕ)) with

– A(ϕ) = {a(ϕ)
0 , . . . , a

(ϕ)

n(ϕ)},

– R(ϕ) = {r(ϕ)
1 , . . . , r

(ϕ)

m(ϕ)}, and

– U (ϕ) the utilities of the agents in A(ϕ) over the resources in R(ϕ),

and

� (A(ψ), R(ψ), U (ψ)) with

– A(ψ) = {a(ψ)
0 , . . . , a

(ψ)

n(ψ)},

– R(ψ) = {r(ψ)
1 , . . . , r

(ψ)

m(ψ)}, and

– U (ψ) the utilities of the agents in A(ψ) over the resources in R(ψ).

The construction is completed by merging them to obtain a MARA setting (A,R,U) with

A = A(ϕ)∪A(ψ), R = R(ϕ)∪R(ψ), and U = U (ϕ)∪U (ψ), and by setting κ = n(ϕ) +n(ψ) +1.

Therefore, (A,R,U, κ) is the XUSWObundle instance.

Since the variable sets of ϕ and ψ are disjoint, the sets of agents, A(ϕ) and A(ψ), and the

sets of resources, R(ϕ) and R(ψ), are disjoint as well. Note further, that each agent in

A(ϕ) has only nonzero utilities on bundles of resources from R(ϕ), and each agent in A(ψ)

has only non-zero utilities on bundles of resources from R(ψ). This implies that no agent

in A has nonzero utilities on bundles of resources from both, R(ϕ) and R(ψ).

Therefore, it follows that:

51

Chapter 3. Complexity of Multiagent Resource Allocation

� If ϕ ∈ 3-SAT and ψ ∈ 3-SAT then there exists an allocation X with swu(X) =

n(ϕ) + n(ψ) + 2 > κ, such that

max{swu(X) | X ∈ Π|A|,|R|} > κ.

� If ϕ ∈ 3-SAT and ψ 6∈ 3-SAT then there exists an allocation X with swu(X) =

n(ϕ) + n(ψ) + 1 = κ and there is no allocation X̃ with swu(X̃) > κ, such that

max{swu(X) | X ∈ Π|A|,|R|} = κ.

� If ϕ 6∈ 3-SAT and ψ 6∈ 3-SAT then for any allocation X, swu(X) ≤ n(ϕ) +n(ψ) < κ,

such that

max{swu(X) | X ∈ Π|A|,|R|} < κ.

The case that ϕ 6∈ 3-SAT and ψ ∈ 3-SAT cannot occur by the assumption that if ψ is

satisfiable then so is ϕ. Hence, (ϕ ∈ 3-SAT ∧ ψ 6∈ 3-SAT) if and only if (A,R,U, κ) ∈
XUSWObundle, which makes (2.1) to be true. Hence by Lemma 2.4, XUSWObundle is

DP-hard. q.e.d.

While this proof already appeared in [106], a slightly simpler and shorter proof from X3C

was later published in [93] – the reduction used there was proposed by an anonymous

reviewer of the paper. It can be found in appendix A.

An obvious question to ask here is whether the same result can be established for

XESWObundle. The next theorem answers this question in the affirmative.

Theorem 3.8. XESWObundle is DP-complete.

Proof. The proof that XESWObundle is in DP is analogous to the one of XUSWObundle,

see Theorem 3.6.

DP-hardness of XESWObundle is similar to DP-hardness of XUSWObundle (see the proof

of Theorem 3.6), but with slightly different utilities.

Again, start from two formulas ϕ and ψ with disjoint variable sets and such that if

ψ is satisfiable then so is ϕ and apply the same construction of agents and resources.

Regarding the utilities, the agents have utilities over the same bundles of resources, but

the attached utility-values vary. At first, double all utilities of the agents A(ϕ) obtained

from ϕ, so

52

3.2. Social Welfare Optimization with Utilities as Bundles

� every agent a
(ϕ)
i , 1 ≤ i ≤ n(ϕ), now has a utility of two for each of the bundles

mentioned in the proof of Theorem 3.2, and

� a
(ϕ)
0 has a utility of two for the empty set and a utility of 2 · n(ϕ) for the bundle

R(ϕ) containing all resources obtained from ϕ.

Second, adjust the utilities of the agents A(ψ) obtained from ψ. Again, double all utilities,

so

� every agent a
(ψ)
j , 1 ≤ j ≤ n(ψ) now has a utility of two for each of the bundles

mentioned in the proof of Theorem 3.2, and

� aψ0 has a utility of two for the empty set and a utility of 2n(ψ) for the bundle R(ψ)

containing all resources obtained from ψ.

In addition, each agent aψj , 1 ≤ j ≤ n(ψ), has a utility of one for the empty set of resources.

This means that each agent aψj can realize a utility of one even if aψj does not get any

resource.

Merging the MARA settings (A(ϕ), R(ϕ), U (ϕ)) and (A(ψ), R(ψ), U (ψ)) resulting from ϕ

and ψ, respectively, one obtains a single MARA setting (A,R,U) as in the proof of

Theorem 3.6. Setting κ = 1 results in (A,R,U, κ), the desired XESWObundle instance.

It follows that:

1. If ϕ ∈ 3-SAT and ψ ∈ 3-SAT then there is an allocation X with swe(X) = 2 > κ,

so

max{swe(X) | X ∈ Π|A|,|R|} > κ.

2. If ϕ ∈ 3-SAT and ψ 6∈ 3-SAT then there is an allocation X with swe(X) = 1 = κ

and there is no allocation X̃ with swe(X̃) > κ, so

max{swe(X) | X ∈ Π|A|,|R|} = κ.

3. If ϕ 6∈ 3-SAT and ψ 6∈ 3-SAT then for any allocation X, swe(X) = 0 < κ, so

max{swe(X) | X ∈ Π|A|,|R|} < κ.

Analogously to the proof of Theorem 3.6, the case ϕ 6∈ 3-SAT and ψ ∈ 3-SAT cannot

occur. Hence, (ϕ ∈ 3-SAT ∧ ψ 6∈ 3-SAT) if and only if (A,R,U, κ) ∈ XESWObundle.

Therefore (2.1) is true and by Lemma 2.4, XESWObundle is DP-hard. q.e.d.

53

Chapter 3. Complexity of Multiagent Resource Allocation

Unfortunately, these proofs are not suitable to prove DP-completeness of XNPSWObundle.

3.3. Social Welfare Optimization with k-additive

Utilities

Another method of representing utilities is the k-additive form. Analogously to the bundle

form, a utility of zero for the empty set of resources is typically assumed. Nevertheless,

in this chapter there are proofs, where a non-zero utility for the empty set is defined. To

deal with this issue, additional dummy-resources may be defined in the following way.

Assume without loss of generality, agent a1 to have a utility of µ 6= 0 for the empty set of

resources, i.e., α∅1 = µ. Define a new resource r̃1 6∈ R and set α∅1 = 0 as well as α
{r̃1}
1 = µ.

Ensure that no other agent can receive r̃1 by setting uj(r̃1) = −M for all aj ∈ A, j 6= 1,

where

M = 1 + µ+
∑

αTj .

Note, that this construction can be used for utilitarian and egalitarian social welfare, but

it is not valid in general. It is easy to see that this construction does not hold for, e.g.,

elitist social welfare and negative values of µ. Therefore, to keep the proofs as short as

possible, non-zero utilities for the empty set of resources are allowed for utilitarian and

egalitarian social welfare in this chapter.

In the following, some complexity results are obtained for the 3-additive form. Fortu-

nately, Chevaleyre et al. [29] proved that 3-additive utilities can be transformed into

2-additive ones by an extension which is linear in the number of specified utilities. Thus,

this does not affect the complexity for the classes NP and DP. Note, that this construction

does not work with all notions of social welfare. Regarding the Nash product, this con-

struction cannot be applied, since it uses negative coefficients, which are not allowed for

the Nash product. Regarding utilitarian and egalitarian social welfare, this construction

is valid. To refer to this fact, the following Lemma is stated.

Lemma 3.9 (Chevaleyre et al. [29]). Regarding utilitarian and egalitarian social welfare,

3-additive is equivalent to 2-additive.

See Chevaleyre et al. [29] for the proof of this Lemma and Example 3.14 for an application

of this Lemma.

In [28], Chevaleyre et al. conjectured ESWOk-additive to be NP-complete. Actually,

this conjecture was solved in the affirmative by Lipton et al. [83] by their proof of

54

3.3. Social Welfare Optimization with k-additive Utilities

NP-hardness for Envy Freeness1-additive: the same reduction is suitable to show NP-

hardness of ESWO1-additive and is deferred to Appendix A.2. Since NP-membership

of ESWOk-additive in NP is straightforward and ESWO1-additive is a restriction of

ESWOk-additive, the following proposition follows.

Proposition 3.10. For any k ≥ 1, ESWOk-additive is NP-complete, even if there are

two agents only.

With a slightly modified reduction, NP-completeness of NPSWOk-additive follows.

Corollary 3.11. For any k ≥ 1, NPSWOk-additive is NP-complete, even if there are

two agents only.

Since the proof is based on the proof of Proposition 3.10, it is deferred to Appendix A.2

as well.

Like DP-completeness of XUSWObundle, Chevaleyre et al. [28] also conjectured DP-

completeness of XUSWOk-additive. The following theorem solves this conjecture in the

affirmative.

Theorem 3.12. For any k ≥ 2, XUSWOk-additive is DP-complete.

Proof. For each fixed k ≥ 2, membership of XUSWOk-additive in DP is straightforward

and analogous to the proof of Theorem 3.6 and it is known that USWOk-additive is

NP-complete for k ≥ 2.

To show DP-hardness of XUSWO2-additive (recall Lemma 3.9 for why it is enough to

consider the case of k = 3), note that Wagner [120] proved DP-completeness of the ex-

act version of Independent Set, denoted Exact Independent Set (XIS, for short),

which is defined as follows.

Exact Independent Set (XIS)

Given: An undirected graph G and a nonnegative integer K.

Question: Is it true that the size of a maximum independent set of G is

exactly K?

The mentioned well-known problem Independent Set [72, 60] (IS, for short) is defined

as follows and is known to be NP-complete.

55

Chapter 3. Complexity of Multiagent Resource Allocation

v1

v2

v3 v4 v5

v8 v7

v6

Figure 3.1.: Graph G for Example 3.14

Independent Set (IS)

Given: An undirected Graph G = (V,E) and a nonnegative integer K.

Question: Is there a subset S ⊆ V of size at least K (i.e., |S| ≥ K) of the

vertex set of G such that no two vertices in S are adjacent?

In this definition, the set S is called an independent set.

Chevaleyre et al. [29] provided a reduction from IS to USWO2-additive (which shows the

NP-hardness of the latter problem). Their reduction satisfies that the size of a maximum

independent set of the given graph equals the maximum utilitarian social welfare of the

MARA setting constructed (maximized over all possible allocations). Combining these

two results, a reduction immediately follows showing XIS≤p
m XUSWO2-additive, which

establishes DP-hardness of XUSWO2-additive, .

Their result is as follows, the proof can be found in Appendix A.2.

Lemma 3.13 (Chevaleyre et al. [29]). USWO2-additive is NP-complete.

To continue the proof of Theorem 3.12, the following example is given to illustrate the

reduction XIS≤p
m XUSWO2-additive.

Example 3.14. Consider the graph given in Figure 3.1. Note, that the maximum inde-

pendent set has size K = 4 and is formed by v1, v2, v3, and v4. According to the proof of

Lemma 3.13, construct the related MARA setting as follows. Since G consists of |V | = 8

vertices, there are n = 8 vertices, a1, . . . , a8 and since G consists of |E| = 10 edges, there

are m = 10 resources,

56

3.3. Social Welfare Optimization with k-additive Utilities

r1 =̂ {v1, v2}, r2 =̂ {v1, v8},
r3 =̂ {v2, v3}, r4 =̂ {v2, v4},
r5 =̂ {v3, v4}, r6 =̂ {v4, v5},
r7 =̂ {v5, v6}, r8 =̂ {v6, v7},
r9 =̂ {v6, v8}, and r10 =̂ {v7, v8}.

According to the present reduction, the utilities of the agents are set as in Table 3.4.

Since graph G has a maximal vertex degree of three, the utilities are 3-additive.

Agent Utilities Agent Utilities

a1 1r1r2 a2 1r1r3r4

a3 1r3r5 a4 1r4r5r6

a5 1r6r7 a6 1r7r8r9

a7 1r8r10 a8 1r2r9r10

Table 3.4.: The utilities of the agents for Example 3.14

In order to maximize utilitarian social welfare, satisfy the agents to the left, i.e., give

r1 and r2 to a1, give r3 and r5 to a3, give r6 and r7 to a5, and give r8 and r10 to a7.

Finally, distribute the remaining resources r4 and r9 to an arbitrary agent, as they will

not change anything. Hence, the maximal utilitarian social welfare is 4, which is exactly

the size of the maximal Independent Set in G.

Now, convert these 3-additive utilities in 2-additive utilities as in the proof of Lemma 3.9.

Note, that the utilities of the agents a1, a3, a5, and a7 already are 2-additive. Therefore,

define the dummy-resources

r̃13 =̂ r1r3, r̃45 =̂ r4r5,

r̃78 =̂ r7r8, and r̃29 =̂ r2r9

and form the new utilities for the agents a2, a4, a6, and a8 as in Table 3.5. Note the

coefficients −17, 34, and −51. Their absolute value is greater than the sum of the absolute

values of all other coefficients of the agents. Thus, the dummy resource r̃13 has to be

given to agent a2 whenever he or she receives r1 and r3 at the same time. Else, agent

a2 realizes a utility ≤ −M , which is clearly far away from optimality, regardless whether

utilitarian or egalitarian social welfare is maximized. The same applies to r̃45, r̃78, and

r̃29.

To summarize, as in Chevaleyre et al. [29] this reduction actually consists of two steps.

1st step: XIS≤p
m XUSWO3-additive, which proves DP-hardness of XUSWOk-additive

for each k ≥ 3.

57

Chapter 3. Complexity of Multiagent Resource Allocation

Agent Utilities

a2 1r̃13r4 . − 17r1r3 . + 34r1r̃13 . + 34r3r̃13 . − 51r̃13

a4 1r̃45r6 . − 17r4r5 . + 34r4r̃45 . + 34r5r̃45 . − 51r̃45

a6 1r̃78r9 . − 17r7r8 . + 34r7r̃78 . + 34r8r̃78 . − 51r̃78

a8 1r̃29r10 . − 17r2r9 . + 34r2r̃29 . + 34r9r̃29 . − 51r̃29

Table 3.5.: The 2-additive utilities of the agents a2, a4, a6, and a8 in Example 3.14

2nd step: Transform XUSWO3-additive to XUSWO2-additive according to Lemma 3.9.

This approach of presenting two reductions is necessary because the value k in the k-

additive representation form corresponds to the maximum vertex degree of the graph

in the given XIS (respectively, IS) instance, and since XIS and IS can be solved in

polynomial time when this graph has a maximum vertex degree of at most two. Hence,

the problem XIS restricted to graphs with maximum vertex degree at most two is not

DP-hard and the restricted problem IS is not NP-hard.

This proves Theorem 3.12. q.e.d.

To complete this chapter, another theorem about the k-additive form is proved. This

time it is the exact variant of egalitarian social welfare.

Theorem 3.15. For any k ≥ 2, XESWOk-additive is DP-complete.

Proof. Of course, membership in DP is analogous to the proof of Theorem 3.12.

Like in the proofs of Theorem 3.6 and Theorem 3.8, Lemma 2.4 is used to show DP-

hardness. This time with A = Chromatic Number [72, 60], which is defined as follows.

Chromatic Number

Given: A graph G = (V,E) and an integer 1 ≤ k ≤ |V |.
Question: Is it possible to color the vertices of G with at most k colors

such that any two adjacent vertices have different colors?

Chromatic Number is known to be NP-complete. A coloring is said to be legal, if it

satisfies the condition of the Chromatic Number-problem.

To apply Lemma 2.4, let G = (V (G), E(G)) and H = (V (H), E(H)) be two given graphs

and k(G) and k(H) be two given positive integers such that if H is legally colorable with

at most k(H) colors then G is legally colorable with at most k(G) colors.

58

3.3. Social Welfare Optimization with k-additive Utilities

Like in the other proofs, define the agents first, so define k(G) agents a
(G)
i , 1 ≤ i ≤ k(G),

and k(H) agents a
(H)
j , 1 ≤ j ≤ k(H), to represent the colors. Furthermore, define dummy

agents ã
(G)
i and ã

(H)
j , where 1 ≤ i ≤ |V (G)| and 1 ≤ j ≤ |V (H)|. Next, define the resources

by introducing one resource r
(G)
i , 1 ≤ i ≤ |V (G)|, for each vertex in G and one resource

r
(H)
j , 1 ≤ j ≤ |V (H)|, for each vertex in H. The utilities of the agents a

(G)
i , ã

(G)
i , a

(H)
j ,

and ã
(H)
j depend on the graphs G and H in the following way.

(i) Each agent a
(G)
i , 1 ≤ i ≤ k(G) has a utility of two for each set containing a single

resource r
(G)
s , 1 ≤ s ≤ |V (G)|, and a utility of −2 · |V (G)| for any set {r(G)

p , r
(G)
q },

1 ≤ p, q ≤ |V (G)| if and only if {v(G)
p , v

(G)
q } is an edge in E(G).

(ii) Analogously, define the utilities of the agents a(H) by replacing G with H: each agent

a
(H)
j , 1 ≤ j ≤ k(H) has a utility of two for each set containing a single resource r

(H)
s ,

1 ≤ s ≤ |V (H)|, and a utility of −2 · |V (H)| for any set {r(H)
p , r

(H)
q }, 1 ≤ p, q ≤ |V (H)|,

if and only if {v(H)
p , v

(H)
q } is an edge in E(H).

(iii) Each dummy agent ã
(G)
i , 1 ≤ i ≤ |V (G)|, and each dummy agent ã

(H)
j , 1 ≤ j ≤

|V (H)|, has a utility of two for the empty set of resources.

(iv) Each dummy agent ã
(G)
i has a utility of −2 for the set containing only the single

resource r
(G)
i where 1 ≤ i ≤ |V (G)|.

(v) Each dummy agent ã
(H)
j has a utility of −1 for the set containing only the single

resource r
(H)
j where 1 ≤ j ≤ |V (H)|.

(vi) To make sure the dummy agents can get only the resources corresponding to their

names (when maximizing egalitarian social welfare), each ã
(G)
i has a utility of −3

for any r
(G)
j , 1 ≤ i, j ≤ |V (G)|, i 6= j and each ã

(H)
s has a utility of −3 for any r

(H)
t ,

1 ≤ s, t ≤ |V (G)|, s 6= t.

(vii) To prevent any agent a
(G)
i , 1 ≤ i ≤ |k(G)| or ã

(G)
s , 1 ≤ s ≤ |V (G)| to get any resource

r
(H)
m , 1 ≤ m ≤ |V (H)|, set the utility of any agent a

(G)
i and ã

(G)
s for any set T of

resources, 1 ≤ |T | ≤ 2, containing some r
(H)
m to be −|V (G)| · |V (H)|.

(viii) Do the same for the agents a
(H)
j and ã

(H)
t and the resources r

(G)
n : Set the utility of

any agent a
(H)
i and ã

(H)
s for any set T of resources, 1 ≤ |T | ≤ 2, containing some

r
(G)
m to be −|V (G)| · |V (H)|.

(ix) For all agents, the utilities of all other sets T of resources with |T | ≤ 2 are set to

zero.

59

Chapter 3. Complexity of Multiagent Resource Allocation

v1

v2 v3

v4

(a) Graph G

v1

v2 v3

v4

(b) Graph H

Figure 3.2.: Graphs G and H for Example 3.16

As a reviewer of JAAMAS, see [93], noticed, for (vii) and (viii), it suffices to set the

related α̃ for sets of size |T | = 1.

Now, form the MARA setting (A,R,U) by defining

A = {a(G)
i | 1 ≤ i ≤ k(G)} ∪ {a(H)

j | 1 ≤ j ≤ k(H)} ∪

{ã(G)
s | 1 ≤ s ≤ |V (G)|} ∪ {ã(H)

t | 1 ≤ t ≤ |V (H)|},

R = {r(G)
i | 1 ≤ i ≤ |V (G)|} ∪ {r(H)

j | 1 ≤ j ≤ |V (H)|},

and the related utilities U as described above. Finally, choose the parameter κ = 1 for

XESWO2-additive.

Example 3.16. To illustrate the proof of Theorem 3.15, the same graph as in Example 3.14

is used for graph G and a slightly different one for graph H. This time legal colorings of

the graphs are given, see Figure 3.2. The different colors are illustrated by different node

shapes. Obviously, graph G is legally colorable by three colors, i.e., k(G) = 3, whereas

graph H is not, i.e., k(H) > 3. According to these graphs, define the following MARA

setting.

� A = {a(G)
1 , a

(G)
2 , a

(G)
3 , a

(H)
1 , a

(H)
2 , a

(H)
3 , ã

(G)
1 , . . . , ã

(G)
4 , ã

(H)
1 , . . . , ã

(H)
4 }

� R = {r(G)
1 , . . . , r

(G)
4 , r

(H)
1 , . . . , r

(H)
4 }

� The utilities are given in Table 3.6

In order to maximize egalitarian social welfare, distribute the resources as in Table 3.7.

Since G is legally colorable with k(G) = 3 colors, all three agents a
(G)
1 , a

(G)
2 , and a

(G)
3

can realize a utility of 2 each. Furthermore, all dummy agents ã
(G)
j , 1 ≤ j ≤ 4 can

realize a utility of 2 for the empty set. Now, consider graph H, which is not legally

colorable with k(H) = 3 colors. Since there is an edge in H between each pair of nodes,

60

3.3. Social Welfare Optimization with k-additive Utilities

Agents Utilities (k-additive)

a
(G)
1 , a

(G)
2 , a

(G)
3

2r
(G)
1 . 2r

(G)
2 . 2r

(G)
3 . 2r

(G)
4 . − 8r

(G)
1 r

(G)
2 . − 8r

(G)
1 r

(G)
3 .

−8r
(G)
1 r

(G)
4 . − 8r

(G)
2 r

(G)
3 . − 8r

(G)
3 r

(G)
4

−16R
(H)
∗

a
(H)
1 , a

(H)
2 , a

(H)
3

2r
(H)
1 . 2r

(H)
2 . 2r

(H)
3 . 2r

(H)
4 . − 8r

(H)
1 r

(H)
2 . − 8r

(H)
1 r

(H)
3 .

−8r
(H)
1 r

(H)
4 . − 8r

(H)
2 r

(H)
3 . − 8r

(H)
2 r

(H)
4 . − 8r

(H)
3 r

(H)
4

−16R
(G)
∗

ã
(G)
1 2 . − 2r

(G)
1 . − 3r

(G)
2 . − 3r

(G)
3 . − 3r

(G)
4 . − 16R

(H)
∗

ã
(G)
2 2 . − 3r

(G)
1 . − 2r

(G)
2 . − 3r

(G)
3 . − 3r

(G)
4 . − 16R

(H)
∗

ã
(G)
3 2 . − 3r

(G)
1 . − 3r

(G)
2 . − 2r

(G)
3 . − 3r

(G)
4 . − 16R

(H)
∗

ã
(G)
4 2 . − 3r

(G)
1 . − 3r

(G)
2 . − 3r

(G)
3 . − 2r

(G)
4 . − 16R

(H)
∗

ã
(H)
1 2 . − 1r

(H)
1 . − 3r

(H)
2 . − 3r

(H)
3 . − 3r

(H)
4 . − 16R

(G)
∗

ã
(H)
2 2 . − 3r

(H)
1 . − 1r

(H)
2 . − 3r

(H)
3 . − 3r

(H)
4 . − 16R

(G)
∗

ã
(H)
3 2 . − 3r

(H)
1 . − 3r

(H)
2 . − 1r

(H)
3 . − 3r

(H)
4 . − 16R

(G)
∗

ã
(H)
4 2 . − 3r

(H)
1 . − 3r

(H)
2 . − 3r

(H)
3 . − 1r

(H)
4 . − 16R

(G)
∗

R
(G)
∗ is any set of size at most 2, containing some resource r

(G)
j

R
(H)
∗ is any set of size at most 2, containing some resource r

(H)
j

Table 3.6.: Utilities of the agents for Example 3.16

it is not possible to give one of the agents a
(H)
1 , a

(H)
2 , and a

(H)
3 a second resource when

maximizing egalitarian social welfare, else he or she would realize a negative utility.

Hence, the remaining resource has to be given to one of the dummy agents. Thus, give,

e.g., r
(H)
4 to agent ã

(H)
4 , who can realize a utility of only one in this setting. Therefore,

there is an agent in this setting, who can realize a utility of only one.

According to Lemma 2.4 consider the following three cases:

1. Suppose G is legally colorable with k(G) colors and H is legally colorable with

k(H) colors. Without loss of generality, the resources corresponding to the vertices

colored with color i, 1 ≤ i ≤ k(G), can be given to agent a
(G)
i . Since those vertices

colored with the same color are not adjacent, all agents can realize only positive

utilities of at least two. The same holds for H and a
(H)
j . Since all resources are

distributed among the agents a
(G)
i and a

(H)
j , each of the agents ã

(G)
s and ã

(H)
t can

realize a utility of two for the empty set. Thus, each agent can realize a utility of

at least two in this allocation and its egalitarian social welfare thus is greater than

κ = 1.

61

Chapter 3. Complexity of Multiagent Resource Allocation

Agent Resource(s) Utility

a
(G)
1 {r(G)

1 } 2

a
(G)
2 {r(G)

2 , r
(G)
4 } 2 + 2 = 4

a
(G)
3 {r(G)

3 } 2

a
(H)
1 {r(H)

1 } 2

a
(H)
2 {r(H)

2 } 2

a
(H)
3 {r(H)

3 } 2

ã
(G)
1 ∅ 2

ã
(G)
2 ∅ 2

ã
(G)
3 ∅ 2

ã
(G)
4 ∅ 2

ã
(H)
1 ∅ 2

ã
(H)
2 ∅ 2

ã
(H)
3 ∅ 2

ã
(H)
4 {r(H)

4 } 2− 1 = 1

Table 3.7.: Allocation for Example 3.16, maximizing egalitarian social welfare.

2. Suppose G is legally colorable with k(G) colors but H is not legally colorable with

k(H) colors. Again, all agents associated with G can realize a utility of at least

two. Since H is not legally colorable with k(H) colors, there is at least one pair

{vm, vn}, 1 ≤ m,n ≤ |V (H)|, of adjacent vertices, which needs to be colored with

the same color. To maximize egalitarian social welfare, it is not possible to give

both resources to the same agent, because he or she has a utility of −2|V (H)| for

owning both resources at the same time. This would lead to a utility of at most

zero. So one of these resources has to be given either to dummy agent ã
(H)
m or to

dummy agent ã
(H)
n . But both these agents can realize a utility of exactly one, and

thus the egalitarian social welfare in this allocation equals the parameter κ = 1.

3. If G is not legally colorable with k(G) colors, it does not matter whether H is legally

colorable with k(H) colors or not, since if G is not legally colorable with k(G) colors

then, analogously to the former case, there is an agent ã
(G)
s , 1 ≤ s ≤ |V (G)| who can

realize only a utility of zero, so the egalitarian social welfare in the corresponding

allocation is less than κ = 1.

Like in the other proofs related to the complexity class DP, the case that G is not legally

colorable with k(G) colors, but H is legally colorable by k(H) colors cannot occur by

assumption.

62

3.4. (In-)Approximability of Social Welfare

Hence, applying Lemma 2.4 proves Theorem 3.15. q.e.d.

3.4. (In-)Approximability of Social Welfare

Since NP-hardness is known for almost all cases, a natural question is, whether it is

possible to approximate these problems. In the following a definition of approxima-

tion algorithms is given. Note, that the definition is given for maximization prob-

lems only. The definition for minimization problems is similar and omitted, since only

maximization problems are investigated in this thesis. For further reading about ap-

proximation theory see, e.g., the textbooks by Vazirani [119] or by Williamson and

Shmoys [122].

Definition. Let P be a maximization problem and OPT (x) its optimal value for input

string x. An α-approximation algorithm A for P is a polynomial-time algorithm that

produces a solution A(x) whose value is at least α · OPT (x) for every input x for P.

Reasonable values for α are 0 < α < 1.

A PTAS (short for polynomial-time approximation scheme) is a family of algorithms Aε

such that for each ε, 0 < ε < 1, Aε is an (1− ε)-approximation algorithm for P.

It turns out that the unrestricted problems are quite hard to approximate and the follow-

ing inapproximability results hold for the general and unrestricted problems.

� Max-USWbundle is not approximable in polynomial time within a factor of nε−1,

unless NP = ZPP. See Chevaleyre et al. [30] for the related reduction and see [106]

for its analysis.

� Max-ESWbundle is not approximable in polynomial time within any factor, unless

P = NP. This holds even if the domain for the utilities is {0, 1}. See Nguyen et

al. [95, 96] for the proof.

� Max-NPSWbundle is not approximable in polynomial time within any factor, unless

P = NP. This holds even if the domain for the utilities is {0, 1}. See Nguyen et

al. [95, 96] for the proof.

� For k ≥ 2, Max-USWk-additive is not approximable in polynomial time within a

factor of 21/22, unless P = NP. This holds even for the case of two agents. See

Nguyen et al. [95, 96] for the proof, it is based on a reduction already presented in

Chevaleyre et al. [30].

63

Chapter 3. Complexity of Multiagent Resource Allocation

� Max-ESW1-additive is not approximable in polynomial time within a factor of

1/2 [12, 63], whereas Max-ESWk-additive is not approximable in polynomial time

within any factor if k ≥ 2 [95, 96]. Both are valid, unless P = NP.

� Max-NPSW2-additive is not at approximable in polynomial time within a factor of

21/22, whereas for k ≥ 3, Max-NPSWk-additive is not approximable in polynomial

time within any factor. Again, both statements are valid, until P = NP. See [95]

for details.

Nevertheless, there are some restricted versions of these problems which can be approx-

imated well, i.e., there are approximation algorithms with a guarantee factor. Some

examples are given below. Remember that the expression of all utilities may be expo-

nential in the number of resources. Hence, some of the results depend on the way the

utilities are queried. Two common models are given below [13].

The first one is the demand oracle. It is queried for agent ai by a vector (w1, . . . , wm) of

particular utilities for the m resources and it returns a bundle S ⊆ R such that the value

ui(S)−
∑

rj∈S wj is maximized. The second one is the value oracle, which is simpler. The

oracle is queried for agent ai and a bundle S ⊆ R and returns ui(R).

� Max-USWbundle is approximable within a factor of 1/2 in the value oracle model,

see Lehmann et al. [81], and within a factor of 1− 1/e in the demand oracle model,

see Dobzinski and Schapira [44]. These factors are only valid, if for all utilities

u(S ∪ S′) + u(S ∩ S′) ≤ u(S) + u(S′), S, S′ ⊆ R

holds.

� Max-USWbundle is approximable within a factor of 1/
√
m in the value oracle model

and within a factor of 1/logm in the demand oracle model. These factors are only

valid, if for all utilities

u(S ∪ S′) ≤ u(S) + u(S′), S, S′ ⊆ R

holds. See Dobzinski et al. [43] for details.

� Max-ESWbundle is approximable within a factor of 1/(2n−1) in the value oracle

model, if for all utilities

u(S ∪ S′) ≤ u(S) + u(S′), S, S′ ⊆ R

64

3.4. (In-)Approximability of Social Welfare

holds. See Chekuri, Vondrák, and Zenklusen [27] for details.

� Max-ESW1-additive is approximable in polynomial time within a factor of 1/(m−n+1),

see Bezáková and Dani [12]. Moreover, it is approximable in polynomial time within

a factor of 1/n, see Golovin [63].

� Max-ESW1-additive admits an PTAS if all agents have the same utilities, i.e.,

ui(r) = uj(r), ∀r ∈ R, 1 ≤ i, j ≤ n.

See Woeginger [123] for details.

� For all k ≥ 1, Max-ESWk-additive and Max-NPSWk-additive can be solved in

polynomial time if the number of resources and agents are equal, i.e., m = n. See

Golovin [63] for Max-ESW and see Nguyen et al. [95, 96] for Max-NPSW.

For further reading, an overview can be found in the survey paper by Nguyen et al. [95]

and in the extended tables of its journal version [96]. Please note, that approximation al-

gorithms for the k-additive form are only studied in detail for k = 1.

65

Chapter 3. Complexity of Multiagent Resource Allocation

66

Chapter 4.

Complexity of Possible Winner Problems

This chapter presents selected proofs for the different variants of the possible winner

problem.

For the problem definition, see Chapter 2.4.2.3. Proofs regarding the possible winner

problem with respect to the addition of new alternatives and weighted voters are given

in Chapter 4.1.1 for the case of co-winners and in Chapter 4.1.2 for the unique-winner

case. In addition, they are summarized in Table 4.1.

Scoring rule PcWNA PWNA

plurality, 1 ≤ |C ′| <∞ Corollary 4.12 Theorem 4.11
2-approval, 1 ≤ |C ′| <∞ Theorem 4.2 and 4.3 Theorem 4.9 and 4.10
k-approval, 1 ≤ |C ′| <∞ Corollary 4.4 Corollary 4.13

Veto, 1 ≤ |C ′| <∞ P Theorem 4.6 Theorem 4.7

Table 4.1.: PcWNA and PWNA for the case of weighted voters. Key: |C ′| is the number
of new candidates and NP-c. is short for NP-complete.

Regarding the different variants of the possible winner problem with uncertain weights,

there are reductions which hold trivially [9].

PWUW-bw-Q+ ≤p
m PWUW-bw-rw-Q+ (4.1)

PWUW-bw-N ≤p
m PWUW-bw-rw-N (4.2)

PWUW-rw-Q+ ≤p
m PWUW-bw-rw-Q+ (4.3)

PWUW-rw-N ≤p
m PWUW-bw-rw-N (4.4)

(4.1) and (4.2) are satisfied by setting the intervals to be [0, B], where B is the bound on

the total weights. (4.3) and (4.4) are satisfied by setting the bound on the total weight

to the sum of the highest possible weight allowed for each weight.

67

Chapter 4. Complexity of Possible Winner Problems

Proofs regarding the possible winner problem with uncertain weights are given in Chap-

ter 4.2. An overview over these results can also be found in Table 4.2.

Voting Rule F PcWUW bw rw bw-rw Reference

Scoring rules(‡) Q P P P P Corollary 4.17

plurality N P P P P
Corollary 4.192-approval N P P P P

Veto N P P P P

k-approval, k ≥ 1 N P P Corollary 4.20

k-approval, k ≥ 4 N NP-c. NP-c. Theorem 4.21�

Copelandα N NP-c. NP-c. NP-c. NP-c. Theorem 4.23�

Ranked pairs N NP-c. NP-c. NP-c. NP-c. Theorem 4.25�

Bucklin voting N NP-c. NP-c. NP-c. NP-c. Theorem 4.28�

Fallback voting N NP-c. NP-c. NP-c. NP-c. Corollary 4.30

Table 4.2.: Overview of the complexity results obtained for PWUW-problems. Key:
NP-c. means NP-complete. (‡): These results also hold for all variants of
PWUW. (�): See also the succeeding corollaries.

Finally, in Chapter 4.3 there are two results for the possible winner problem with un-

certain voting system. Table 4.3 summarizes the complexity results obtained for this

problem.

Voting Rule Restriction PcWUVS PWUVS Reference

Scoring rules(‡) |C| = m ≥ 4 NP-complete Theorem 4.33

Copelandα P Theorem 4.34

Table 4.3.: Overview of the complexity results obtained for PWUVS. (‡): when restricted
to scoring vectors α = (α1 . . . αm−1 x1 x2 x3 0) with xj = 1 for at least one
j ∈ {1, 2, 3}.

Some of the proofs presented in this chapter have already been published in the Proceed-

ings of the 10th International Joint Conference on Autonomous Agents and Multiagent

Systems [8], the Proceedings of the 20th European Conference on Artificial Intelligence [9],

and the 4th International Workshop on Computational Social Choice [10].

68

4.1. Possible Winner with Respect to the Addition of New Alternatives

4.1. Possible Winner with Respect to the Addition of New

Alternatives and with Weighted Voters

The possible winner problem with respect to the addition of new alternatives was intro-

duced in Chapter 2.4.2.3. Proofs for the variants with weighted voters are given in the

following two chapters.

4.1.1. Results for Possible co-Winners

The first proof will be by a reduction from the well known problem Partition, which is

known to be NP-complete [72, 60]. It is defined as follows.

Partition

Given: A nonempty sequence a1, a2, . . . , as of positive integers such

that
∑s

i=1 ai is even.

Question: Is there a subset I ⊆ S = {1, 2, . . . , s} such that∑
i∈I ai =

∑
i∈(S\I) ai?

Theorem 4.1. PcWNA is NP-complete for plurality in the case of weighted voters, even

if there are only two initial candidates and one new candidate is to be added.

Proof. Membership in NP is easy to see, because it is possible to check in polynomial

time, whether the distinguished candidate c is a winner of the election.

To show NP-hardness of PcWNA for plurality in the case of weighted voters, consider the

following reduction from the NP-complete problem Partition. Let A = (a1, a2, . . . , as)

be a given instance for Partition with
∑s

i=1 ai = 2Ã. Construct an election (C, V) as

follows.

There are two candidates, i.e., C = {c, c}, and s + 1 voters. One voter’s preference is

c > c and his or her weight is Ã. Formally, this voter forms the list V1. The other s

voters form the list V2, their preference is c > c and they have weights according to the

ai, for each ai there is one voter with this weight. Clearly, c wins the election (C, V1∪̇V2)

with 2Ã points. Now consider one new candidate, i.e., C ′ = {d}. The claim is that c can

be made a winner of the election if and only if A is a “yes” instance of Partition.

69

Chapter 4. Complexity of Possible Winner Problems

From right to left Assume a valid Partition instance to be given. Thus, the voters in

V2 can be partitioned into some voters who vote d > c > c with a total weight of

Ã and into some voters tho vote c > c > d or c > d > c with a total weight of Ã.

For the voter who prefers c > c, d can be placed at second or third position at will.

Now, each of the candidates is placed on the first position with a total weight of Ã,

hence c is a co-winner of the election (C ∪ C ′, V).

From left to right Assume, c is a co-winner of the election. Of course, d cannot be

placed at the first position of the voter with c > c. Hence, d must be placed at the

first position of some of the voters with c > c. Since c has a score of Ã and all voters

in V2 together have a score of 2Ã, c can only be a co-winner if c and d also have

a score of Ã each. This is possible if and only if the weights allow a partition into

two subsets which sum up to exactly Ã each. Hence, there is a valid Partition.

This proves Theorem 4.1 q.e.d.

A quite similar Partition-based proof can be given for 2-approval. In Theorem 4.2, NP-

completeness is proved for the case of an unbounded number of new candidates.

Theorem 4.2. PcWNA is NP-complete for 2-approval in the case of weighted voters,

where the number of candidates is unbounded and one new candidate is to be added.

Proof. For membership in NP see the proof of Theorem 4.1.

NP-hardness is proved by a reduction of Partition. Let A = (a1, . . . , as) be an input

for Partition with
∑s

i=1 ai = 2Ã.

This time, define s+ 3 candidates, i.e., C = {c, c, c0, . . . , cs} where c is the distinguished

candidate and c the candidate who wins the original election. The set of new candidates

is C ′ = {d}.

Note that for 2-approval it is sufficient to specify the candidates on the first two positions,

thus let C denote the remaining candidates in an arbitrary order. Therefore, define the

following votes and weights. For each ai, 1 ≤ i ≤ s, there is one vote ci > c > C with

weight ai and there is one vote c > c0 > C with weight Ã. This means, each ci, 1 ≤ i ≤ s
has a score of ai, c has a score of 2Ã and c and c0 have a score of Ã. The claim is that c

can be made a co-winner of the election by adding a new candidate d if and only if there

is a Partition.

70

4.1. Possible Winner with Respect to the Addition of New Alternatives

From right to left Assume there is a Partition of the ai, such that∑
i∈I

ai = Ã =
∑

i∈(S\I)

ai.

By setting d between ci and c for all votes where i ∈ I, c loses a score of Ã and d

gets a score of Ã. For all i with i ∈ (S \ I), place d somewhere behind the first two

positions. Now, c, c, c0, and d tie with a score of Ã each and thus, c is a co-winner

of the election1.

From left to right Assume that c can be made a co-winner by adding the new candi-

date d. The new candidate can only get a score of Ã whereas c loses a score of Ã.

The only possibility for this is to place d between some ci, 1 ≤ i ≤ s, and c such

that the weights of the related voters sum up to exactly Ã. Of course, in this case

a Partition of A exists.

This proves Theorem 4.2. q.e.d.

Now, a natural question is about having a limited number of new alternatives, but more

than just one. The next theorem proves NP-completeness for 2-approval and the case

of weighted voters, an unbounded number of old candidates, and a bounded number of

new candidates. The hardness result is obtained via a reduction of the well-known NP-

complete problem Bin Packing (see, e.g., Garey and Johnson [60]), which is defined as

follows.

Bin Packing

Given: A finite list A = (a1, . . . , an) with ai ∈ Z+, 1 ≤ i ≤ n, and two

positive integers B and M .

Question: Are there (at most) M disjoint subsets Aj ⊆ A, such that∑
i∈Aj ai < B for 1 ≤ j ≤M and

⋃
1≤j≤M Aj = A?

Theorem 4.3. PcWNA is NP-complete for 2-approval in the case of weighted voters

if the number of candidates is unbounded and if the number of new candidates is bounded.

Proof. Again, membership in NP is straightforward. NP-hardness is proved by providing

a reduction from Bin Packing.

1Of course, in the pathological case that there is one ai, 1 ≤ i ≤ s with ai = Ã the related ci also ties
with a score of Ã.

71

Chapter 4. Complexity of Possible Winner Problems

Construct an election with n + 3 candidates as follows. Analogously to the proof of

Theorem 4.2, define n + 3 candidates, c (the distinguished candidate), c (the candidate

who wins the original election), and a set of dummy candidates {c0, . . . , cn}. According

to the set A, define a vote ci > c > C with weight ai for 1 ≤ i ≤ n, where, again, C is

the set of the other candidates in arbitrary order. At last, define a vote c > c0 > C with

weight B.

If this election is held under 2-approval, c and c0 have B points, whereas c has
∑
ai

points and each ci, 1 ≤ c ≤ n has ai points. Note, that ai < B and
∑
ai > B for

reasonable instances of Bin Packing. Thus, c wins the election. Now, the claim is that

c is a possible co-winner, when adding M − 1 new alternatives, if and only if there is a

valid Bin Packing for (A,B,M). Let the new candidates be labeled d1, d2, . . . , dM−1.

From right to left Assume a valid packing for Bin Packing and let the bins are num-

bered from 1 to M . Now, set the new candidates d1, . . . dM−1 in the following way.

For all ai chosen to be in bin j, 1 ≤ j ≤ M − 1, set dj at first position of the vote

related to ai. Leave the votes for bin M just as they are. Now c loses all the points

related to the bins 1, . . . ,M − 1 and keeps the points related to bin M . Thus, c0

has at most B points. Note, that every new candidate also gets at most B points,

hence c is now a co-winner of the election with B points. Note that c will never be

a unique-winner, since he or she still ties with c0.

From left to right Assume c to be a possible co-winner by adding at most M − 1 new

candidates. Since c cannot get any additional score, c has to lose several points,

while the new alternatives are not allowed to get more than B points each. Thus,

the new candidates have to be placed at the votes ci > c > C and, without loss

of generality, they can be placed at the first position of these votes. Now, if c is a

co-winner, then each new candidate dj , 1 ≤ j ≤ M − 1, has at most B points and

c has at most B points. For each j with 1 ≤ j ≤M − 1, collect the ai according to

the weights of the votes in which dj is placed on first position and put these ai into

bin j. All ai related to the weights of votes in which c remains on second postition

now fit into the last bin. Hence, there is a valid Bin Packing.

This proves Theorem 4.3. q.e.d.

Note, that the number of new candidates is not bounded by some fixed value x, but by

the number of candidates in the original election, since Bin Packing becomes trivial

when the number of bins exceeds the number of items to pack.

72

4.1. Possible Winner with Respect to the Addition of New Alternatives

It is easy to see that the proofs of Theorem 4.2 and Theorem 4.3 can be transferred

to k-approval. In this case there are (k − 1)(n + 1) + 2 candidates with one new al-

ternative for the Partition-based proof of Theorem 4.2 and M new alternatives for

the proof of Theorem 4.3 based on Bin Packing. Thus, the following corollary can be

stated.

Corollary 4.4. PcWNA is NP-complete for k-approval in the case of weighted voters if

the number of candidates is unbounded and if the number of new candidates is bounded.

This holds even if there is only one new alternative.

The following example should illustrate the extension of the proofs for the case of k =

4.

Example 4.5. Let k = 4 and consider a given instance of Partition, e.g.,

A = (2, 3, 4, 5, 7, 9) with
6∑
i=1

ai = 30 = 2Ã.

Note, that a valid partition can be achieved by choosing (2, 4, 9) and (3, 5, 7). According

to the proof of Theorem 4.2, the list of votes in the original election is given in the left

half of Table 4.5, where the set of candidates is C = {c, c, c1, c2, c3, cij} for 1 ≤ i ≤ 6

and 1 ≤ j ≤ 3. The labelling of the candidates is slightly different from the proof of

Theorem 4.2 to improve readability. Note further, that for k-approval candidate c must

be placed on position k. Have a look at Table 4.4 for the scores of the candidates. Let

the new candidate be d. Since there is a partition of (2, 3, 4, 5, 7, 9), it is possible to make

c a winner of the election by placing d appropriately into the votes, see the right half of

Table 4.5. Now, the candidates c, c, c1, c2, c3, and d tie for the first place with a score of

15 each.

Candidate Score Candidate Score Candidate Score Candidate Score

c11 2 c12 2 c13 2 c 15
c21 3 c22 3 c23 3 c 30
c31 4 c32 4 c33 4 c1 15
c41 5 c42 5 c43 5 c2 15
c51 7 c52 7 c53 7 c3 15
c61 9 c62 9 c63 9

Table 4.4.: Scores of the candidates in Example 4.5

Please note, that NP-hardness of k-approval does not imply NP-hardness of Veto. Quite

the contrary, PcWNA for Veto is in P.

73

Chapter 4. Complexity of Possible Winner Problems

Before After
weight vote weight vote

2 c11 > c12 > c13 > c > C 2 d > c11 > c12 > c13 > C

3 c21 > c22 > c23 > c > C 3 c21 > c22 > c23 > c > C

4 c31 > c31 > c33 > c > C 4 d > c31 > c31 > c33 > C

5 c41 > c41 > c43 > c > C 5 c41 > c41 > c43 > c > C

7 c51 > c51 > c53 > c > C 7 c51 > c51 > c53 > c > C

9 c61 > c61 > c63 > c > C 9 d > c61 > c61 > c63 > C

15 c > c1 > c2 > c3 > C 15 c > c1 > c2 > c3 > C

Table 4.5.: Votes before and after insertion of the new candidate d in Example 4.5

Theorem 4.6. PcWNA is in P for Veto voting in the case of weighted voters if the

number of candidates is unbounded for each postive number of new candidates. Moreover,

c is a possible co-winner in each election, where at least one new candidate is added.

Proof. Insert all new candidates somewhere behind c, who is the distinguished candidate,

in the votes. q.e.d.

Note, that all of these proofs are not suitable to proof the unique-winner case. Fortunately,

this is possible with similar ideas as shown in the next chapter.

4.1.2. Results for Unique Winners

Now, focus on the related unique-winner problems PWNA. Regarding Veto, the mem-

bership in P also holds for the unique-winner case. Let n be the number of voters and m

be the number of candidates in the actual election, the result holds for each number k,

1 ≤ k ≤ n−m+ 1, of new candidates.

Theorem 4.7. PWNA is in P for Veto voting in the case of weighted voters if the

number of candidates is unbounded and if the number of new candidates is bounded. This

holds even if there is only one new alternative.

Proof. Without loss of generality, there is no vote with weight zero. Let C be the set of

old candidates and let c ∈ C be the distinguished candidate. By adding new candidates,

it is not possible to lose points for any candidate. Thus, it is only possible to earn more

points. Hence, if there is a candidate d ∈ C \ {c} who does not have a last position in

any vote, it is not possible for c to be a unique-winner. But if each candidate d ∈ C \ {c}
has at least one last position in some vote, set the new candidates in a way such that

74

4.1. Possible Winner with Respect to the Addition of New Alternatives

each candidate except c has at least one last position in some vote. Therefore, c is the

unique-winner of the new election. Note that this is only possible, if the total number of

candidates (old and new ones) exceeds the number of voters by at most one (c is the only

candidate without any last position), i.e., m + k ≤ n + 1 where k is the number of new

candidates. All necessary conditions can be checked in polynomial time, thus PWNA is

in P for veto voting. q.e.d.

Now, focus on plurality and 2-approval again, but this time for the unique-winner case.

As in Chapter 4.1.1, formal proofs are given for plurality and 2-approval and a corollary is

stated for k-approval. At first, a result for one new candidate is proved.

Lemma 4.8. PWNA is NP-complete for plurality in the case of weighted voters, even

if there are only two initial candidates and one new candidate to be added.

Proof. Recall the proof of Theorem 4.1 with C = {c, c} and V = V1 ∪ V2 and remember∑s
i=1 ai = 2Ã. This time, set the weights as follows.

V1: c > d one vote of weight K + 1/2

V2: d > c one vote of weight ai for each 1 ≤ i ≤ s

Again, this is a reduction from Partition, from which the ai are obtained. The claim

is that c can be made the unique-winner of the election if and only if there is a valid

Partition of the ai.

From left to right Assume c to be the possible unique-winner. Let d be the new candi-

date. Hence, d has to be placed at first position in some of the votes related to the

ai. Furthermore, he or she has to get at most Ã points while c has to lose at least

Ã points. Hence, there is a valid Partition of the ai.

From right to left Assume, there is a valid Partition of the ai by some index set I.

Set the new candidate d at the first position in the votes related to I and at the

last position in all other votes. Now d and c have both Ã points each, while c has

Ã+ 1/2 points.

In fact, when dealing with integer weights K + 1/2 is not a valid weight. Therefore,

multiply all the weights by two in this case, which does not affect the outcome of the

election. Since membership in NP is straightforward, the theorem is proved. q.e.d.

The same idea is used to prove NP-completeness for 2-approval, which also bases on a

reduction from Partition.

75

Chapter 4. Complexity of Possible Winner Problems

Theorem 4.9. PWNA is NP-complete for 2-approval in the case of weighted voters,

where the number of candidates is unbounded and one new candidate can be added.

Proof. Again, assume an instance A = (a1, a2, . . . , as) for Partition to be given. Recall

the proof of Theorem 4.2 with slightly different votes and one additional (old) candidate

c′, hence C = {c, c, c0, c1, . . . , cs}.

� For each ai, 1 ≤ i ≤ s, define a vote ci > c > C with weight ai, where, again, C

denotes the set of candidates not yet mentioned in this vote.

� There is one vote c > c > C with weight K − 1/2.

� There is one vote c > c0 > C with weight 1.

The claim is that c is a possible unique-winner if and only if there is a valid partition of

the ai.

Referring to the proof of Theorem 4.2, it is easy to see that c is the possible winner, if

there is a valid partition. It remains to show that there is a valid partition if c is a possible

winner. Thus, assume c to be the possible winner. Since the weights ai are integers, c

has to lose all but K points, while the new candidate d is allowed to only get K points.

Hence, one obtains a valid partition of the ai. Moreover, because of the additional vote

c > c0 there is no tie between c and any other candidate.

As above, multiplying by two leads to valid weights. Since membership in NP is easy to

see, Theorem 4.9 follows. q.e.d.

The same result can be proved for 2-approval and a bounded number of new candi-

dates.

Theorem 4.10. PWNA is NP-complete for 2-approval in the case of weighted voters,

where the number of old candidates is unbounded and the number of new candidates is

bounded.

Proof. Membership in NP is straightforward. So, recall the proof of Theorem 4.3 and

the Bin Packing-based reduction. This time, definine n + 4 initial candidates C =

{c, c, c′, c0, c1, . . . , cn} and slightly different votes as follows.

� There is one vote ci > c > C with weight ai for each 1 ≤ i ≤ n.

� There is one vote c > c0 > C with weight B − 1/2.

76

4.1. Possible Winner with Respect to the Addition of New Alternatives

� There is one vote c > c′ > C with weight 1.

Analogously to the proof of Theorem 4.3, it is easy to see that c is a possible winner for a

valid instance of Bin Packing. On the other hand, assume c to be the possible winner.

Now c has to lose (
∑

1≤i≤n ai) − B points to M − 1 new candidates d1, . . . , dM−1, who

are only allowed to get B points each. This leads to a valid instance of Bin Packing,

as the ai are integers. Again, multiply all weights by two in order to receive valid values

for the weights. q.e.d.

The next Theorem proves NP-completeness to plurality with more than one new candi-

date. Note, that in the proof the number of new candidates is bounded according to the

number of voters.

Theorem 4.11. PWNA is NP-complete for plurality in the case of weighted voters, even

if there are only two initial candidates and the number of new candidates is bounded.

Proof. To prove NP-hardness, consider the following reduction from Bin Packing, de-

fined in the proof of Theorem 4.3. Introduce at least two candidates c and c, where, as

usual in this chapter, c is the distinguished candidate and c is the candidate who actually

wins.

According to the ai, 1 ≤ i ≤ n, define votes c > C; one of these votes with weight ai for

each 1 ≤ i ≤ n.

Furthermore, define one vote c > C with weight B + 1/2. Finally, define M − 1 new

candidates dj , 1 ≤ j ≤M − 1.

The claim is that c is the possible winner if and only if there is a valid Bin Packing.

From right to left Assume a valid instance of Bin Packing to be given and assume the

bins to be numbered from one to M . According to the bins, set the new candidates

dj , 1 ≤ j ≤ M − 1, at the first position of the votes with weight ai, if the related

weight ai is contained in bin j. For the last bin, leave the first position untouched.

Now, c has B + 1/2 points, whereas all the other candidates have at most B points

each. Thus, c wins the election.

From left to right Assume c to be the possible winner. Since it is not possible to give c

more points, c has to lose points. Hence, the new candidates have to be placed at

the first position on some of the votes where c > c. Since c wins the election, each

new candidate can have at most B points and d has to lose all but B points. This

leads to a valid instance of Bin Packing.

77

Chapter 4. Complexity of Possible Winner Problems

Analogously to the proofs of Lemma 4.8, Theorem 4.9, and Theorem 4.10 all scores have

to be multiplied by two. Again, membership in NP is easy to see. q.e.d.

Note, that even NP-hardness for plurality with a bounded number of new candidates in

the co-winner case follows from Theorem 4.11 by giving a weight of B to the vote c > C,

thus the following corollary holds.

Corollary 4.12. PcWNA is NP-complete for plurality in the case of weighted voters,

even if there are only two initial candidates and the number of new candidates is bounded.

Finally, the analogous unique-winner result for Corollary 4.4 follows.

Corollary 4.13. PWNA is NP-complete for k-approval in the case of weighted voters if

the number of candidates is unbounded and if the number of new candidates is bounded.

This holds even if there is only one new alternative.

4.2. The Possible Winner Problem with Uncertain

Weights

Of course, the uncertainty cannot only occur in the new alternatives, but also in the

weights itself. The first thing to consider are scoring rules. If scoring rules are used and

the weights can be chosen from Q, the problem can be written as a linear program and

therefore can be solved in polynomial time. At the beginning, consider the following

example.

Example 4.14. Assume the set of candidates to be C = {c, c1, c2, c3}. Furthermore,

assume three votes with a fixed weight of one each:

1 : c > c1 > c2 > c3

1 : c3 > c1 > c2 > c

1 : c2 > c1 > c3 > c

as well as two votes without given weights:

x1 : c1 > c > c3 > c2

x2 : c2 > c > c3 > c1

At first, let the scoring vector be α =
(
α1 α2 α3 α4

)
. Thus,

78

4.2. The Possible Winner Problem with Uncertain Weights

c: α1 + 2α4 + x1α2 + x2α2

c1: 3α2 + x1α1 + x2α4

c2: α1 + 2α3 + x1α4 + x2α1

c3: α1 + α3 + α4 + x1α3 + x2α3

are the scores of the candidates. Obviously, if the inequations

α1 + 2α4 + x1α2 + x2α2 ≥ 3α2 + x1α1 + x2α4

α1 + 2α4 + x1α2 + x2α2 ≥ α1 + 2α3 + x1α4 + x2α1

α1 + 2α4 + x1α2 + x2α2 ≥ α1 + α3 + α4 + x1α3 + x2α3

are satisfied, c is a winner of the election2. These equations are equivalent to

(α2 − α1)x1 + (α2 − α4)x2 ≥ −α1 + 3α2 − 2α4

(α2 − α4)x1 + (α2 − α1)x2 ≥ 2α3 − 2α4

(α2 − α3)x1 + (α2 − α3)x2 ≥ α3 − α4.

Now, assume the election is held under the Borda rule, i.e., α =
(

3 2 1 0
)

and

remember that rational assumptions are x1 ≥ 0 and x2 ≥ 0. Hence, the equations

simplify to

−x1 + 2x2 ≥ 3

2x1 − x2 ≥ 2

x1 + x2 ≥ 1

x1 ≥ 0

x2 ≥ 0.

It is easy to see, that a valid solution is x1 = x2 = 3. For the unique-winner case, a valid

solution is x1 = 3 and x2 = 3.5. The related scores for all candidates are

Candidate x =

(
3

3

)
x =

(
3

3.5

)
c 15 16

c1 15 15

c2 14 15.5

c3 10 10.5

2For a unique-winner, change ≥ to >.

79

Chapter 4. Complexity of Possible Winner Problems

Of course, it es easy to see, that the inequation system may not have a valid solution, if

there are additional conditions like x1, x2 ≤ 1 or x1 + x2 ≤ 2.

As mentioned in Chapter 2.3.1, this is just a problem of feasibility which can easily be

transformed into a linear program. At first, add a objective function, e.g., by maximizing

the score of candidate c by

maximize α1 + 2α4 + x1α2 + x2α2

which is equivalent to

maximize 3 + 2x1 + 2x2

for Borda. By omitting the constant and multiplying by −1, this equation is equivalent

to

minimize cTx with c = −

(
2

2

)
(4.5)

The constraints can be written as

Ax ≥ b with A =

−1 2

2 −1

1 1

 and b =

3

2

1

 (4.6)

and the bounds as x ≥ 0. Therefore, (4.5) and (4.6) form a linear program in standard

form.

Of course, it is already known that various voting rules – including scoring rules – can be

represented by such a system of linear inequalities, see, e.g., Chamberlin and Cohen [25]

or Faliszewski et al. [54].

In addition, the scoring function has to be weight-independent. These requirements are

fulfilled for, e.g., all scoring rules, Bucklin voting and fallback voting. On the other hand,

e.g., Copelandα’s scoring function does not satisfy it.

Lemma 4.15. Let E be a voting rule with a weight-independent scoring function that can

be described by a system of polynomially many linear inequalities. Then E-PWUW-bw-

rw-Q+ is in P.

80

4.2. The Possible Winner Problem with Uncertain Weights

Proof. Let E be such a voting rule and let A be the system of linear inequalities that

describes E . An LP which can be used to solve E-PWUW-bw-rw-Q+ can be constructed

as follows. Let E = (C, V) with V = V0∪̇V1 an instance of this problem with

� V0 the list of votes with unspecified weights,

� V1 the list of votes with unit-weight,

� c ∈ C the distinguished candidate,

� B ∈ Q+ the bound on the weights, and

� Ri = [`i, ri] ⊆ Q+, 1 ≤ i ≤ |V0| the regions for the unspecified weights.

The variables of the linear program are x =
(
x1 . . . x|V0| χ

)T
∈ Q|V0|+1 and the

objective is to maximize cTx with c =
(

0 . . . 0 1
)T
∈ Q|V0|+1. Furthermore, the

linear program consists of the following constraints:

A (4.7)

xi − χ ≥ 0 for 1 ≤ i ≤ |V0| (4.8)

χ ≥ 0

xi ≤ ri for 1 ≤ i ≤ |V0| (4.9)

−xi ≤ −`i for 1 ≤ i ≤ |V0| (4.10)

|V0|∑
i=1

xi ≤ B (4.11)

The constraints of A, i.e., (4.7), give the linear inequalities that have to be fulfilled for

the designated candidate c to win under E . By maximizing the additional variable χ in

the objective function one can try to find solutions where the weights are positive, this

is accomplished by Constraint (4.8). Constraints (4.9) and (4.10) implement the given

ranges for the weights and Constraint (4.11) implements the given upper bound B for

the total weight to be assigned.

If χ > 0, c can be made the unique-winner of the election, otherwise c can only be made

a co-winner. If there is no feasible solution at all, c cannot be made a winner, neither

unique nor non-unique.

Note, that the number of variables and constraints is polynomially bounded and the vari-

ables are to be from Q, therefore the problem is solvable in polynomial time. q.e.d.

81

Chapter 4. Complexity of Possible Winner Problems

Now, it is easy to see the same result for the other variants of PWUW:

� Omit (4.9) and (4.10) for E-PWUW-bw-Q+.

� Omit (4.11) for E-PWUW-rw-Q+.

� Omit (4.11), (4.9), and (4.10) for E-PWUW-Q+.

Therefore, the following Corollary holds.

Corollary 4.16. Let E be a voting rule with a weight-independent scoring function that

can be described by a system of polynomially many linear inequalities and let the weights be

rational numbers. Then E-PWUW, E-PWUW-bw, and E-PWUW-rware in P. More-

over, E-PcWUW, E-PcWUW-bw, E-PcWUW-rw, and E-PcWUW-bw-rw are in

P.

Since each scoring rule fulfills the assumption of Lemma 4.15 and Corollary 4.16, the

following corollary holds.

Corollary 4.17. PcWUW-Q, PWUW-Q, PcWUW-bw-Q, PWUW-bw-Q, PcWUW-

rw-Q, PWUW-rw-Q, PcWUW-bw-rw-Q, and PWUW-bw-rw-Q are in P for all

scoring rules.

Of course, this approach only works if the weights are rational numbers, i.e., x ∈ Qn, or

if the scoring function is weight-independent. In general, linear programming is no longer

solvable in polynomial time, if the weights are chosen from integers (see Chapter 2.3.1).

Therefore, one might think that the problem is NP-complete for scoring rules with integer

weights. Fortunately as shown in Baumeister et al. [9], some of the PcWUW-problems

with integer weights are solvable in polynomial time, however. The idea is to trans-

form the PcWUW-problem into a Maximum Flow problem [59], which is defined as

follows.

Maximum Flow

Given: A directed graph (V,E) with vertex set V , edges E ⊆ V × V ,

two distinguished vertices s, t ∈ V , and a mapping c : E → R+

which is called the capacity.

Question: Is there a mapping f : E → R+ (the flow), such that

f(e) ≤ c(e) for all e ∈ E and∑
u∈V f((u, v)) = −

∑
w∈V f((v, w)) for all v ∈ V \ {s, t} with

(u, v), (v, w) ∈ E?

82

4.2. The Possible Winner Problem with Uncertain Weights

Note, that Maximum Flow can be solved in polynomial time.

Consider an instance of 2-approval-PcWUW-bw-rw-N, where for each vote in V0 the

range of allowed weights is {0, 1}. The construction of a related Maximum Flow-instance

is as follows.

Let V ′0 denote the list of votes in V0 where the distinguished candidate c is ranked among

the top two positions. Without loss of generality, assume the given bound B on the total

weight to satisfy B < |V ′0 |. Otherwise, the optimal strategy is to let the weights of the

votes in V ′0 be 1 and to let the weights of all other votes be 0.

Now construct the network as follows. The vertices are {s, s′, t} ∪ V ′0 ∪ (C \ {c}) and the

edges are defined by:

1. There is an edge (s, s′) with capacity B and an edge (s′, u) for each u ∈ V ′0 with

capacity 1.

2. There is an edge (U, u) with capacity 1 if and only if U ∈ V ′0 , u ∈ C \ {c}, and d is

ranked besides c among the top two positions in U . This ensures that u ∈ C \ {c}
cannot get a higher score than c.

3. There is an edge (u, t) with capacity B + score(c, V1) − score(u, V1) for each u ∈
C \{c}, where score(d, V1) is defined as the 2-approval score of d ∈ C in vote list V1.

Note, that if this capacity is negative, the given instance of 2-approval-PWUW-

bw-rw-N is trivially a “no”-instance, since c can never be made a winner.

It is easy to see, that this construction is also valid for other ranges.

Example 4.18 illustrates the construction.

Example 4.18. Assume the election (C, V0 ∪ V1) with C = {c, c1, c2, c3} and the votes V0

and V1 given in Table 4.6. Note that the votes in V1 have weight one and let the ranges

for the votes in V0 be [0, 2]. Furthermore, let the bound B = 5. Look at Figure 4.1 for

the resulting flow network. Note that the nodes in V ′0 are abbreviated by u1, u2, and u3

respectively. The edges are labeled by c : f for the capacity c and the flow f respectively.

Note, that the presented solution is not unique. According to the flow in the graph, set

the weight of vote c > c1 > c2 > c3 to 2, set the weight of the vote c > c2 > c3 > c1 to 2,

and set the weight of the vote c > c3 > c1 > c2 to 1. Finally, the scores of the candidates

are c: 5, c1: 4, c2: 4, and c3: 3. Hence, c is a 2-approval winner of the election.

Moreover, the problem is trivial for plurality and veto: for plurality only the first place of

the votes matters whereas for veto only the last place of the votes matters.

83

Chapter 4. Complexity of Possible Winner Problems

Node Votes in V0 Votes in V1

u1: c > c1 > c2 > c3 c1 > c2 > c3 > c
u2: c > c2 > c3 > c1 c2 > c3 > c1 > c
u3: c > c3 > c1 > c2 c3 > c1 > c2 > c

Table 4.6.: Votes of the election in Example 4.18

s s′ u2

u1

u3

c1

c2

c3

t
5 : 5

2 : 2

2 : 2

2 : 1

2 : 2

2 : 2

2 : 1

3 : 2

3 : 2

3 : 1

Figure 4.1.: Network for the election in Example 4.18

Therefore, the following Corollary holds.

Corollary 4.19. For E ∈ {plurality, veto, 2-approval}, E-PcWUW-N, E-PcWUW-bw-

N, E-PcWUW-rw-N, and E-PcWUW-bw-rw-N are in P.

Please note, that the claims for PcWUW-bw-N and PcWUW-rw-N follow from (4.2)

and (4.4) stated at the beginning of this chapter.

For the next statement, it suffices to maximize the weights of the votes in V ′0 that rank c

among their top k positions, and to minimize the weights of the other votes.

Corollary 4.20. For each k ≥ 1, k-approval-PcWUW-N and k-approval-PcWUW-

rw-N are in P.

An interesting case is k-approval for k ≥ 4. For PcWUW-N and PcWUW-rw-N,

membership in P is shown in Corollary 4.20, whereas the other variants, PcWUW-bw-

N and PcWUW-bw-rw-N are NP-complete.

The proof is done via a reduction from the well-known NP-complete problem X3C [60],

which is defined as follows.

84

4.2. The Possible Winner Problem with Uncertain Weights

Exact Cover by 3-Sets (X3C)

Given: A set B = {b1, . . . , b3q} and a collection S = {S1, . . . , Sn} with

|Si| = 3 and Si ⊆ B, 1 ≤ i ≤ n.

Question: Does S contain an exact cover for B, i.e., a subcollection

S ′ ⊆ S such that every element of B occurs in exactly one

member of S ′?

Theorem 4.21. For each k ≥ 4, k-approval-PcWUW-bw-N is NP-complete.

Proof. Membership in NP is easy to see. NP-hardness is proved by a reduction from

X3C.

Let (B,S) be a given instance of X3C with B = {b1, . . . , b3q} and S = {S1, . . . , Sn}.
Construct an instance of k-approval-PcWUW-bw-N with the set

C = {c, b1, . . . , b3q, b11, . . . , b13q, b21, . . . , b23q, b31, . . . , b33q}

of candidates, where c is the distinguished candidate, and with the set V0 of n votes of

the form c >
−→
Si > C, where

−→
Si is an arbitrarily fixed ordering of the three candidates

occurring in Si and C indicates that the remaining candidates can be ranked in an

arbitrary order, the set V1 of q − 1 votes of the form bj > b1j > b2j > b3j > · · · for each j,

1 ≤ j ≤ 3q, and the bound B = q on the total weight of the votes in V0.

Recall that the votes in V1 all have fixed weight one, and those of the votes in V0 are

from N. It remains to show that S has an exact cover for B if and only if the weights of

the voters in this election can be set in a way such that c is a winner.

From left to right Assume that there is an exact cover S ′ ⊆ S for B. By setting the

weights of the votes c >
−→
Si > C to one for those q subsets Si contained in S ′,

and to zero for all other votes in V0, c is a winner of the election, as c and all bj ,

1 ≤ j ≤ 3q, receive exactly q points, whereas b1j , b
2
j , and b3j , 1 ≤ j ≤ 3q, receive

q − 1 points each.

From right to left Assume that c can be made a winner of the election by choosing the

weights of the votes in V0 appropriately. Note that the bound on the total weight

for the votes in V0 is B = q. Every bi gets q − 1 points from the votes in V1 and c

gets points only from the votes in V0. Since there are always some bj getting points

if a vote from V0 has weight one, there are at least three bj having q points if a vote

from V0 has weight one. Hence c must get q points from the votes in V0 by setting

the weight of q votes to one. Furthermore, every bj can occur only once in the votes

85

Chapter 4. Complexity of Possible Winner Problems

having weight one in V0, as otherwise c would not win. Thus, the Si corresponding

to the votes of weight one in V0 must form an exact cover for B.

By adding dummy candidates this proof can adapted for k-approval for any fixed k > 4.

q.e.d.

With the reduction (4.2) from the beginning of this chapter, the following corollary

holds.

Corollary 4.22. For each k ≥ 4, k-approval-PcWUW-bw-rw-N is NP-complete.

The next theorem proves the same result for Copelandα elections. Again, this proof is

done via a reduction from X3C.

Theorem 4.23. For each α ∈ Q, 0 ≤ α ≤ 1, Copelandα-PcWUW-N is NP-complete.

Proof. Again, NP-membership is easy to see for all choices of 0 ≤ α ≤ 1.

To prove NP-hardness for Copelandα-PcWUW-N, assume a given instance of X3C,

(B,S), with B = {b1, . . . , b3q} and S = {S1, . . . , Sn}. Construct an instance for Copelandα-

PcWUW, where the set of candidates is B ∪{c, d, e} with the distinguished candidate c.

Without loss of generality, assume that q ≥ 4 and define the votes V0 and V1 as follows.

V0 will encode the X3C-instance and V1 will be used to implement McGarvey’s trick, see

Remark 2.10.

V0 consists of the following n votes. For each j, 1 ≤ j ≤ n, there is a vote d > e >
−→
Sj >

c > C. Again,
−→
Sj is an arbitrarily fixed ordering of the candidates occurring in Sj and C

denotes the remaining candidates in an arbitrary order.

V1 is the vote list whose weighted majority graph has the following edges:

� (c, d) with weight q + 1, (d, e) with weight q + 1, and (e, c) with weight q + 1.

� For each j, 1 ≤ j ≤ 3q, (d, bj) and (e, bj) each with weight q + 1.

� For each j, 1 ≤ j ≤ 3q, (bj , c) with weight q − 3.

� The weight on any other edge not defined above is no more than 1.

It follows that, no matter what the weights of the votes in V0 are, d beats e and e beats

c in pairwise elections, and both d and e beat all candidates in B in pairwise elections.

For c to be a winner, c must beat d in their pairwise election, which means that the total

weight of the votes in V0 is no more than q.

86

4.2. The Possible Winner Problem with Uncertain Weights

On the other hand, c must beat all candidates in B. This happens if and only if the votes

in V0 that have positive weights correspond to an exact cover of B, and all of these votes

must have weight one. This means that Copelandα-PcWUW-N is NP-hard. q.e.d.

It is easy to modify the proof for the variants of the PcWUW-problem.

� For Copelandα-PcWUW-bw-N, set B = q.

� For Copelandα-PcWUW-rw-N, set the range of each vote in V0 to be {0, 1}.

� By (4.2) or (4.4), the result for Copelandα-PcWUW-bw-rw-N follows.

Thus, the following Corollary follows.

Corollary 4.24. E-PcWUW-bw-N, E-PcWUW-rw-N, and E-PcWUW-bw-rw-N

are NP-complete for E = Copelandα

The same result can be proved for ranked-pairs. The proof is similar to the one of

Theorem 4.23.

Theorem 4.25. ranked-pairs-PcWUW-N is NP-complete.

Proof. That the problem is in NP is easy to see. For the hardness proof, assume a given

X3C-instance (B,S) with B = {b1, . . . , b3q} and S = {S1, . . . , Sn}. Now, construct the

following Ranked-Pairs-PcWUW-N-instance, where the set of candidates is B ∪ {c, d, e}
with c the distinguished candidate.

V0 consists of the following n votes: For each j, 1 ≤ j ≤ n, there is a vote

e >
−→
Sj > c > d > C.

As above,
−→
Sj is an arbitrarily fixed ordering of the candidates occurring in Sj C denotes

the remaining candidates in an arbitrary order.

V1 is the list of votes whose weighted majority graph has the following edges, and again

is constructed by applying McGarvey’s trick, see Remark 2.10.

� (c, d) with weight 2q + 1, (d, e) with weight 4q + 1, and (e, c) with weight 2q + 1.

� For every j, 1 ≤ j ≤ 3q, (d, bj) and (e, bj) each with weight 2q + 1.

� For every j, 1 ≤ j ≤ 3q, (bj , c) with weight 4q − 1.

� For each (bi, bj), 1 ≤ i < j ≤ 3q with weight one.

87

Chapter 4. Complexity of Possible Winner Problems

If the total weight of votes in V0 is larger than q, then the weight on (e, c) and (e, bj) in

the weighted majority graph is at least 3q + 2, and the weight on (d, e) is no more than

3q, which means that c is not a winner for ranked pairs. Moreover, if c is a winner, then

the weight on any (bj , c) should not be strictly higher than the weight on (c, d), otherwise

(bj , c) will be fixed in the final ranking. It follows that if c is a winner, then the votes in V0

that have positive weights correspond to an exact cover of B, and all of these votes must

have weight one. This means that ranked-pairs-PcWUW-N is NP-hard. q.e.d.

The following example illustrates the proof.

Example 4.26. Consider the X3C-instance (B,S) = ({1, 2, 3, 4, 5, 6}, {S1, S2, S3, S4}) with

S1 = {1, 2, 3}, S2 = {2, 3, 4}, S3 = {3, 4, 5}, and S4 = {4, 5, 6}. Obviously, B = S1∪̇S4.

According to the proof of Theorem 4.25, define the set of candidates C to be C =

{c1, c2, c3, c4, c5, c6, c, d, e}, where cj=̂j, 1 ≤ j ≤ 6 to improve readability. The votes V0

are given in Figure 4.2. According to the exact cover, choose a weight of one for vote 1

and vote 4 as well as a weight of zero for vote 2 and vote 3.

vote 1: e > c1 > c2 > c3 > c > d > c4 > c5 > c6

vote 2: e > c2 > c3 > c4 > c > d > c1 > c5 > c6

vote 3: e > c3 > c4 > c5 > c > d > c1 > c2 > c6

vote 4: e > c4 > c5 > c6 > c > d > c1 > c2 > c3

Figure 4.2.: Votes V0 of Example 4.26

Table 4.7 shows the values N(c′, c′′) for the weighted majority graph of the votes in

V1, whereas Table 4.8 shows the values N(c′, c′′) for the election V0∪̇V1. Note, that in

Table 4.8 N(c, d) = 7 and N(c′, c′′) ≤ 7 for all c′, c′′ ∈ C. Therefore, by choosing an

appropriate tie-breaking rule, c is the winner of the election. Therefore, c is a possible

winner for the variant of uncertain weights.

Again, it is easy to modify the proof for the variants of the PcWUW-problem.

� For ranked-pairs-PcWUW-bw-N, set B = q.

� For ranked-pairs-PcWUW-rw-N, set the range of each vote in V0 to be {0, 1}.

� By (4.2) or (4.4), the result for ranked-pairs-PcWUW-bw-rw-N follows.

Thus, the following corollary holds.

Corollary 4.27. E-PcWUW-bw-N, E-PcWUW-rw-N, and E-PcWUW-bw-rw-N

are NP-complete for E = ranked pairs.

88

4.2. The Possible Winner Problem with Uncertain Weights

c′
c′′

c d e c1 c2 c3 c4 c5 c6

c � 5 −5 −7 −7 −7 −7 −7 −7

d −5 � 9 5 5 5 5 5 5

e 5 −9 � 5 5 5 5 5 5

c1 7 −5 −5 � 1 1 1 1 1

c2 7 −5 −5 −1 � 1 1 1 1

c3 7 −5 −5 −1 −1 � 1 1 1

c4 7 −5 −5 −1 −1 −1 � 1 1

c5 7 −5 −5 −1 −1 −1 −1 � 1

c6 7 −5 −5 −1 −1 −1 −1 −1 �

Table 4.7.: Values N(c′, c′′) for the votes V1 of 4.26

c′
c′′

c d e c1 c2 c3 c4 c5 c6

c � 7 −7 −7 −7 −7 −7 −7 −7

d −7 � 7 5 5 5 5 5 5

e 7 −7 � 7 7 7 7 7 7

c1 7 −5 −7 � 3 3 1 1 1

c2 7 −5 −7 −3 � 3 1 1 1

c3 7 −5 −7 −3 −3 � 1 1 1

c4 7 −5 −7 −1 −1 −1 � 3 3

c5 7 −5 −7 −1 −1 −1 −3 � 3

c6 7 −5 −7 −1 −1 −1 −3 −3 �

Table 4.8.: Values N(c′, c′′) for the votes of V0∪̇V1 of 4.26

89

Chapter 4. Complexity of Possible Winner Problems

The next Theorem proves NP-completeness for Bucklin voting. Again, this proof is done

via a reduction from X3C.

Theorem 4.28. BV-PcWUW-N is NP-complete.

Proof. Analogously to the last proofs, NP membership is easy to see. NP-hardness

is proved via a reduction from the problem X3C. From a given X3C-instance (B,S)

with B = {b1, . . . , b3q} and S = {S1, . . . , Sn}, construct the following instance of BV-

PcWUW-N. The set of candidates is B ∪ {c, d} ∪D ∪D′, where D = {d1, . . . , d3q} and

D′ = {d′1, . . . , d′3q} are sets of auxiliary candidates. V0 consists of the following n votes:

For each j, 1 ≤ j ≤ n, there is a vote d >
−→
Sj > c >

−→
D >

−→
D′ > C, where, as usual,

−→
Sj is an arbitrarily fixed ordering of the candidates occurring in Sj and C indicates an

arbitrarily order of the remaining candidates.

V1 consists of q−1 copies of
−→
B > c >

−→
D′ >

−→
D > d and one copy of

−→
D′ > c >

−→
B > d >

−→
D .

If the total weight of votes in V0 is larger than q, then d is the unique candidate that

is ranked in top positions for more than half of the votes, which means that c is not a

winner. Now, suppose the total weight of the votes in V0 is at most q. Then, the Bucklin

score of c is 3q + 1 and the Bucklin score of any candidate in D and D′ is larger than

3q+ 1. Therefore, c is a Bucklin winner if and only if the Bucklin score of any candidate

in B is at least 3q + 1. This happens if and only if the votes in V0 that have positive

weights correspond to an exact cover of B and all of these votes must have weight one.

This means that BV-PcWUW-N is NP-hard. q.e.d.

As above, it is easy to modify the proof for the variants of the PcWUW-problem.

� For BV-PcWUW-bw-N, set B = q.

� For BV-PcWUW-rw-N, set the range of each vote in V0 to be {0, 1}.

� By (4.2) or (4.4), the result for BV-PcWUW-bw-rw-N follows.

Thus, the following Corollary follows.

Corollary 4.29. PcWUW-bw-N, PcWUW-rw-N, and PcWUW-bw-rw-N are NP-

complete for Bucklin voting.

As noted in Chapter 2.4.2.1, Bucklin voting can be seen as the special case of fallback

voting where all voters give complete linear orders over all candidates. So the NP-hardness

results for Bucklin voting transfer to fallback voting, while the upper NP-bounds are still

straightforward.

90

4.3. The Possible Winner Problem Under Uncertain Voting System

Corollary 4.30. PcWUW-N, PcWUW-bw-N, PcWUW-rw-N, and PcWUW-bw-

rw-N are NP-complete for fallback voting.

4.3. The Possible Winner Problem Under Uncertain Voting

System

At first, the PWUVS-problem is studied under the class of scoring rules.

As in the previous chapters, an election E = (C, V) with |C| = m and |V | = n is

given, and the question is, whether the distinguished candidate c ∈ C can be made a

winner - but this time by specifying the values αj of the scoring vector α = (α1, . . . , αm)

appropriately.

The following notation will be used for Theorem 4.33.

Definition. For an election E = (C, V), let τj(d) denote the total number of occurences

of candidate d ∈ C at position i, 1 ≤ i ≤ m, in the list V of votes. For all a ∈ C \ {c},
let

	(c,i)(a) := τi(a)− τi(c),

i.e., the number of votes where a is on position j minus the number of votes where c is on

position j. Furthermore, define by �(d,i) a circular block of |C|−1 votes, where candidate

d ∈ C is always at position i and all other candidates take all the remaining positions

exactly once, by shifting them in a circular way.

In the following, an example for this notation is given.

Example 4.31. For the election (C, V) with C = {a, b, c} and V = (a > b > c, a > c >

b, b > a > c, c > b > a), it is

τ1(a) = 2, τ2(a) = 1, τ3(a) = 1,

τ1(b) = 1, τ2(b) = 2, τ3(b) = 1,

τ1(c) = 1, τ2(c) = 1, τ3(c) = 2,

	(c,1)(a) = 1, 	(c,2)(a) = 0,

	(c,1)(b) = 0, 	(c,2)(b) = 1,

and �(c,1) = (c > a > b, c > b > a).

91

Chapter 4. Complexity of Possible Winner Problems

Note that, if the election is held under scoring vector ~α =
(
α1 . . . αm

)
, candidate c

wins if and only if

m∑
i=1

	(c,i)(a) · αi ≤

 0 for the co-winner case

1 for the unique-winner case

for each a ∈ C \ {c}.

The following lemma shows how to construct a list of votes for given values 	(c,i)(a)

under weak conditions.

Lemma 4.32. Let C be a set of m candidates, c ∈ C a distinguished candidate, c′ ∈ C
a dummy candidate, and the values 	(c,i)(a) ∈ Z, 1 ≤ i ≤ m− 1, for all candidates cj in

C \ {c, c′} be given. Let α =
(
α1 α2 . . . αm−1 0

)
be a scoring vector.

It is possible to construct a list V of votes satisfying

1. every candidate cj ∈ C \ {c, d} has the given values 	(c,i)(a), 1 ≤ i ≤ m − 1, in

election (C, V), and

2. candidate c′ cannot beat candidate c in election (C, V)

in time polynomial in m.

Proof. Let m = |C| be the number of candidates. For each positive value 	(c,i)(a),

1 ≤ i ≤ m− q, a ∈ C \ {c, d}, construct two types of circular blocks of votes.

1. The first block is of type �(d,i), except that in the vote in which candidate a

is at position m, the positions of a and d are swapped. For this block it holds

that 	(c,i)(a) = 1, and all other values 	(c,j)(b) and 	(c,j)(a), b ∈ C \ {c, d, a},
1 ≤ j ≤ m − 1, remain unchanged. These blocks will be added with multiplicity

	(c,i)(a). To ensure that candidate d has no chance to beat candidate c, add the

votes of the circular block �(d,m) with multiplicity m · 	(c,i)(a). Clearly, this block

does not affect the values 	(c,j)(b), 1 ≤ j ≤ m− 1, b ∈ C \ {c, d}.

2. If 	(c,i)(a) is negative, add the block of type �(d,m), where the places of a and d are

swapped in the vote in which a is at position i, with multiplicity −	(c,i) (a). The

effect is that 	(c,i)(a) is decreased by 1 for each of these blocks. Again, to ensure

that candidate d will not be able to beat candidate c, add the circular block �(d,m)

with multiplicity −	(c,i) (a) + 1.

92

4.3. The Possible Winner Problem Under Uncertain Voting System

By construction, the values 	(c,i)(d), 1 ≤ i ≤ n, are never positive, so obviously d has

no chance to beat or to tie with c in the election whatever scoring rule will be used.

Since the votes can be stored as a list of binary integers representing their corresponding

multiplicities, these votes can be constructed in time polynomial in m. q.e.d.

To make use of Lemma 4.32, a succinct representation like in Faliszewski et al. [52] of

the election is needed. Please note, that this succinct representation is also related to

the notion of compilation complexity [33, 125]. As mentioned above, this means that the

votes are not stored ballot by ballot for all voters, but as a list of binary integers giving

their corresponding multiplicities.

Theorem 4.33. Let S be the class of scoring rules with m ≥ 4 candidates that are defined

by a scoring vector of the form α =
(
α1 . . . αm−4 x1 x2 x3 0

)
, with xi = 1 for at

least one i ∈ {1, 2, 3}. Assuming succinct representation of the votes, S-PcWUVS and

S-PWUVS are NP-complete.

NP-hardness will be proved via a reduction from the NP-complete problem Integer

Knapsack [60]. It is defined as follows.

Integer Knapsack

Given: A finite set of elements U = {u1, . . . , un}, two mappings

s, v : U → N, and two positive integers, b and k.

Question: Is there a mapping c : U → N such that
∑n

i=1 c(ui)s(ui) ≤ b
and

∑n
i=1 c(ui)v(ui) ≥ k?

Proof. Membership in NP is obvious. As mentioned above, NP-hardness is shown via a

reduction from Integer Knapsack.

At first, focus on the co-winner case and then transfer the proof to the unique-winner

case. Let (U, s, v, b, k) be an instance of Integer Knapsack with U = {u1, . . . un} and

let c : U → N be a mapping.

It holds that

n∑
i=1

c(ui) · s(ui) ≤ b (4.12)

n∑
i=1

c(ui) · v(ui) ≥ k

93

Chapter 4. Complexity of Possible Winner Problems

is equivalent to

(
s(u1) s(u2) . . . s(un)

−v(u1) −v(u2) . . . −v(un)

)
·


c(u1)

c(u2)
...

c(un)

 ≤

(
b

−k

)
.

It follows that 

−b′

k′

nb

A (n− 1)b
...

b


·



c′(u1)

c′(u2)
...

c′(un)

1


≤



0

0

0

0
...

0


(4.13)

with

A =



s(u1) s(u2) . . . s(un)

−v(u1) −v(u2) . . . −v(un)

−1 0 . . . 0

0 −1 . . . 0
...

0 . . . 0 −1


where

c′(ui) = c(ui) + (n− i+ 1)b, 1 ≤ i ≤ n,

b′ = b+
n∑
i=1

b · s(ui) · (n− i+ 1), and

k′ = k +
n∑
i=1

k · v(ui) · (n− i+ 1).

Please note, that the last n rows of the matrix ensure that

c′(ui) ≥ (n− i+ 1)b, 1 ≤ i ≤ n,

94

4.3. The Possible Winner Problem Under Uncertain Voting System

and so there are no new solutions added for which the values c(ui) may be negative.

Furthermore, since c(ui) ≤ b, it is now ensured that

c′(u1) ≥ c′(u2) ≥ · · · ≥ c(un) ≥ b.

Hence it still holds that c is a solution for the given instance of Integer Knapsack if

and only if c′ is a solution for (4.13).

Now, define an election E = (C, V) with candidate set C = {c, d, e, f, g1, . . . , gn} where

c is the distinguished candidate and d is a dummy candidate who cannot beat c in

the election whatever scoring rule will be used. The list of votes will be built using

Lemma 4.32 according to the matrix in (4.13). The n+ 2 rows in the matrix correspond

to the candidates e, f , and g1, . . . , gn. Since the matrix has only n + 1 columns, the

positions n+ 2 and n+ 3 in the votes will have no effect on the outcome of the election,

and thus the corresponding 	(c,i)(a) values, n+ 2 ≤ i ≤ n+ 3, can be set to zero for all

candidates a ∈ {e, f, g1, . . . , gn}. The corresponding values in the scoring vector can be

set to either zero or one, respecting the conditions for a valid scoring vector. Hence, the

votes in V have to fulfill the following properties:

	(c,i)(e) =


s(ui) for 1 ≤ i ≤ n

−b′ for i = n+ 1

0 for n+ 2 ≤ i ≤ n+ 3,

	(c,i)(f) =


−v(ui) for 1 ≤ i ≤ n

k′ for i = n+ 1

0 for n+ 2 ≤ i ≤ n = n+ 3,

	(c,i)(gj) =



−1 for 1 ≤ i ≤ n, i = j

(n− i+ 1)b for i = n+ 1, 1 ≤ j ≤ n

0 for 1 ≤ i ≤ n+ 3,

1 ≤ j ≤ n, i 6= j.

According to Lemma 4.32, these votes can be constructed in polynomial time such that

the dummy candidate d has no influence on c being a winner of the election, whatever

scoring rule of type α =
(
α1 . . . αn 1 αn+2 αn+3 0

)
will be used.

95

Chapter 4. Complexity of Possible Winner Problems

Since the values 	(c,i)(a) assigned to the candidates a ∈ C \ {c, d} are set according to

the matrix in (4.13), it holds that c can be a winner in election E = (C, V) by choosing

a scoring rule of the form α =
(
α1 . . . αn 1 αn+2 αn+3 0

)
if and only if for each

a ∈ C \ {c}
n∑
i=1

	(c,i)(a) · c(ui) +	(c,n+1)(a) ≤ 0

holds. As described above, the values in the scoring vector for positions n + 2 and

n + 3, have no effect on the outcome of the election. Hence, by switching rows in the

matrix the set of possible scoring rules can be extended to scoring rules of the form

α =
(
c(u1) . . . , c(un) x1 x2 x3 0

)
, with xi = 1 for at least one i ∈ {1, 2, 3}. Hence,

c can be made a winner of the election E = (C, V) if and only if there is a solution to

(4.13).

Therefore, there is a solution to (4.12) if and only if there is a solution to (4.13). Thus,

it holds that there is a solution c to the instance of Integer Knapsack if and only if

there is a scoring rule α, of the form described above, under which c wins the election

E = (C, V).

To see that this reduction also settles the unique-winner case, note that (4.13) is equivalent

to 

−b′ + 1

k′ + 1

nb+ 1

A (n− 1)b+ 1
...

b+ 1


·



c′(u1)

c′(u2)
...

c′(un)

1


≤



1

1

1

1
...

1


. (4.14)

The election that needs to be constructed has the same candidate set as above and the

voters are defined according to the values 	(c,n+1)(a) for a ∈ C \ {c, d} in the matrix

of (4.14). Thus, c is the unique-winner of the modified election if and only if for each

a ∈ C \ {c}
n∑
i=1

	(c,i)(a) · c(ui) +	(c,n+1)(a) ≤ 1

holds.

Analogously to the first part of the proof, there is a scoring vector of the form α =(
α1 . . . αn x1 x2 x3 0

)
with xi = 1 for at least one i ∈ {1, 2, 3} in which c

96

4.3. The Possible Winner Problem Under Uncertain Voting System

wins the election if and only if there is a solution c for the given Integer Knapsack

instance. q.e.d.

Finally, consider Copelandα elections. Here, the uncertainty is the parameter α.

Theorem 4.34. E-PcWUVS and E-PWUVS are polynomial-time solvable for the fam-

ily of Copelandα elections:

E = {Copelandα | α ∈ Q ∩ [0, 1]}.

Proof. To decide whether a distinguished candidate c can be made a winner of the election

by choosing the parameter α after all the votes have been cast, compute

f(ci) =


win(c)−win(ci)
tie(c)−tie(ci) if tie(c) 6= tie(ci)

win(c)− win(ci) otherwise

for each ci ∈ C \ {c}.

If f(ci) ≥ 0 for all ci ∈ C, c can be made a winner of the election by setting

α = min
ci∈C
{f(ci), 1}.

Otherwise, c cannot be made a winner. Note, that this covers the co-winner case only.

For c to be the unique-winner winner of the election, it must hold that f(ci) > 0 for all

ci ∈ C and α is set to a value greater than

min
ci∈C
{f(ci)}

if this value is less than one, or else to one. If f(ci) ≤ 0 for at least one ci ∈ C, c cannot

be made the unique-winner of the election.

Therefore, Copelandα-PcWUVS and Copelandα-PWUVS are in P. q.e.d.

97

Chapter 4. Complexity of Possible Winner Problems

98

Chapter 5.

Peer Reviewing

Evaluation of persons, papers, products, etc. is a fundamental social activity. For exam-

ple, students are evaluated by teachers, scientific papers by journal/conference reviewers,

and sportsmen by referees, e.g., in figure skating and gymnastics. Even if all reviewers

in a rating system are subjectively fair, some of them may be biased and produce scores

systematically too high or too low. If then not all objects (or persons) are reviewed by

all reviewers, it becomes complicated to aggregate the scores given to the same objects

(or persons) in a fair way.

This thesis focuses on the problem of ranking scientific papers submitted to confer-

ences based on the reviewers’ scores, where usually the number of reviews per paper

is small. The common procedure applied by popular conference management systems

such as EasyChair1 and ConfMaster2 is described as (quoting from the EasyChair web-

site):

“When computing the average score, weight reviews by reviewer’s confidence.”

This means that all scores given to a paper are simply averaged, possibly weighted by

reviewer-specific weights, the confidence levels of the reviewers, which again are subjec-

tive because every reviewer evaluates only him- or herself. Under these conditions it may

happen that by good luck a weak scientific paper goes to some lenient or generous review-

ers, while a good paper goes to a harsh reviewer and some normal reviewers. Then the

weak paper might be accepted, but the good one might be rejected.

This work aims to improve the common “naive” (as Lauw et al. [80] call it) approach

where the overall score of each paper is obtained by simply averaging the individual scores

given to it. Of course, paper scores can only provide some guidance on paper acceptance;

the final decision is usually made on deeper considerations.

1http : //www.easychair.org
2http : //www.confmaster.net

99

Chapter 5. Peer Reviewing

The models presented in the following have already been published in the Proceedings of

the 25th AAAI Conference on Artificial Intelligence [110] and the Website Proceedings of

the 6th Multidisciplinary Workshop on Advances in Preference Handling [108].

5.1. Model Assumptions and an Example

It is assumed here that external information about the reviewers is not used, such as

weighting the scores. There is also no separate “training” phase in order to character-

ize the reviewers’ tendencies. Instead, the proposed methods apply cross-classification

techniques to determine the characteristics of both the reviewers and the judged objects

simultaneously in one step.

All reviewers are assumed to be “honest,” to exercise their best judgments, without any

personal relation to certain objects. Nevertheless, some reviewers may be biased in giving

systematically high or low scores. As long as all papers are evaluated by all reviewers,

this is not an obstacle to fair score aggregation by averaging. However, if there are only

a few reviews per paper, problems are likely to arise. The following toy example taken

from Lauw et al. [79] shows what can happen.

Example 5.1. Consider the data in Table 5.1. There are five reviewers ri, 1 ≤ i ≤ 5, and

five papers pj , 1 ≤ j ≤ 5. The original scores yij from Lauw et al. [79] are here multiplied

by 10 and are thus in the range from 0 to 10. Consisting of only 15 scores in total, this

data set is very small.

r1 r2 r3 r4 r5

p1 6 3 3 – –
p2 6 – – 3 3
p3 6 – – 3 3
p4 – 4 – 4 4
p5 – – 4 4 4

Table 5.1.: Data for a toy example taken from Lauw et al. [79].

The naive approach results in the same average score of 4.0 for all five papers. This seems

to be highly questionable: in their preliminary discussion, Lauw et al. [79] point out that

reviewer r1 is very likely to be lenient, causing too high aggregated scores for papers p1,

p2, and p3.

100

5.2. Two-Way Classification Models

5.2. Two-Way Classification Models

In the reviewing process considered, reviewers not only comment on the weaknesses and

strengths of the papers, but also give a score to each paper reviewed. The following

analysis focuses only on the scores. These scores are assumed to be integers, to which

situation the most evaluation processes can be transformed, even if decimal numbers with

one or two decimals are given. High scores mean good quality.

There are I reviewers ri, 1 ≤ i ≤ I, and J papers pj , 1 ≤ j ≤ J . For each pair (i, j), there

exists a binary number eij , where eij = 1 means that reviewer ri reviews paper pj , and

eij = 0 otherwise. The matrix (eij) is called incidence matrix. Let E = {(i, j) | eij = 1}.
The scores corresponding to pairs (i, j) ∈ E are denoted by yij .

5.2.1. The Linear Model: Identical Variances of Scores

Adapting the classical statistical linear modeling approach, the following model is used:

yij = D (µ+ αi + βj + εij) for (i, j) ∈ E. (5.1)

Here, D is a discretization operator that transforms any real number x into an integer

score D(x). The other symbols have the following meanings:

� µ is the overall mean of all scores given,

� αi is the mean difference between the scores of reviewer ri and µ,

� βj is the mean difference between the scores of paper pj and µ,

� εij is a random error for (i, j) ∈ E.

The αi are closely related to the “leniencies” of reviewers discussed by Lauw et al. [79, 80],

and the βj to their paper “qualities.”

The idea is that reviewer ri does not assign a score to paper pj based on its true quality βj

(which ri does not know), but based on ri’s own noisy view of pj ’s quality, which is βj+εij .

This judgment is then linearly shifted according to the reviewer’s “leniency.” Simplifying

more general models, it is assumed that there is no interaction between reviewers and

papers (which, if desired, could be expressed by parameters (αβ)ij).

101

Chapter 5. Peer Reviewing

The strategy in the following is to ignore the discretization in the statistics and to assume

that the discretized data belong to the truly linear model

yij = µ+ αi + βj + εij for (i, j) ∈ E (5.2)

with

E εij ≡ 0 and var εij ≡ σ2 for (i, j) ∈ E, (5.3)

where the εij are independent with identical variance σ2 and E and var denote expectation

and variance, respectively. The error of this simplifying approach will be discussed in

Example 5.3 below. Model (5.2) is called two-way classification in the analysis of variance,

see, e.g., the book by Draper and Smith [46].

As mentioned above, the naive estimators of the sums µ+βj , here denoted by µ̂+ βj , are

the averages of all review scores assigned to the respective paper:

µ̂+ βj = y∗j =
1

n∗j

∑
i:(i,j)∈E

yij , (5.4)

where n∗j is the number of reviews for paper pj . No serious statistician will use these naive

estimators, since they are not unbiased and better estimators are possible.

Theory says that only the differences of the effects αi and βj can be estimated with-

out bias. Fortunately, for the problem of ranking papers it completely suffices to have

estimates of the differences βj − β1. And for evaluating the reviewers, estimates of the

differences αi − α1 are fully sufficient. Thus, one may assume that

I∑
i=1

αi = 0 (5.5)

and

J∑
j=1

βj = 0. (5.6)

In many statistical textbooks such as Draper and Smith [46] or Sokal and Rohlf [117], it

is assumed that a fixed, strictly positive number K of observations is given for each pair

(i, j). If so and if K = 1, least-squares estimates of µ, αi, and βj are easy to determine.

102

5.2. Two-Way Classification Models

They directly follow from the means

y∗∗ =
1

IJ

I∑
i=1

J∑
j=1

yij ,

yi∗ =
1

J

J∑
j=1

yij ,

y∗j =
1

I

I∑
i=1

yij

as

µ̂ = y∗∗,

α̂i = yi∗ − y∗∗, and

β̂j = y∗j − y∗∗.

These estimators are unbiased. In this case, the naive approach is the best.

However, in the situation typical for peer reviewing, the “observation” counts nij are

0 (reviewer ri does not review paper pj) or 1 (reviewer ri does review paper pj), i.e.,

in this case, nij is restricted to eij . Note that nij = 2 would mean that reviewer ri

reviews paper pj twice, independently. Therefore, one is confronted with a so-called

“incomplete” (and “unbalanced”) experimental design. Koch [74, Sections 3.4.2–3] de-

scribes the underlying theory. The case of interest here is referred to as two-way cross-

classification.

The parameters are estimated by the least-squares approach, i.e., the sum over all

(yij − µ− αi − βj)2

is minimized. To this end, Koch [74] describes numerical approaches based on normal

equations. Standard statistical software offers various ways to obtain estimates of the αi

and βj and of µ, which differ in the so-called reparametrization conditions.

The model variance σ2 is estimated by the mean squared error, which is the sum of

quadratic deviations (yij − ŷij)2 with ŷij = µ̂ + α̂i + β̂j divided by their number minus

one. The estimators obtained are unbiased and in some sense “best.” In the case of

normally distributed εij , the least-squares estimators are also maximum likelihood esti-

mators.

103

Chapter 5. Peer Reviewing

For practical statistical analysis, the statistical software package IBM-SPSS Statistics 20

(which will be abbreviated by SPSS), procedure UNIANOVA, was used. The proce-

dure UNIANOVA does not use the reparametrization conditions (5.5) and (5.6), instead

the results are shifted such that αI and βJ are zero. Note that, in general, many such

reparametrization conditions are possible, and that, in essence, they are all equivalent:

the obtained parameters can easily be transformed to other reparametrization condi-

tions, including (5.5) and (5.6). The same results can be computed using MATLAB,

MINQ (see Chapter 2.3.2), and Algorithm 1, which can be found in Appendix B. See

Remark B.1 in Appendix B for the application of the algorithm to the different mod-

els.

Example 5.2 (continuing Example 5.1). Table 5.2 shows the estimates for the parameters

in the linear model; the parameter µ is estimated as 4.0. The model parameters indicate

that reviewer r1 indeed has to be considered as lenient, while the other reviewers are

estimated to have some degree of rigor. The papers are now divided into two classes: p1,

p2, and p3 seem to be weaker papers with lower scores, while the other two papers appear

to be of the same higher quality. It cannot surprise that Lauw et al. [79] arrive at the

same conclusions for this extremely simple example.

i, j α̂i β̂j
1 2.4 −0.4
2 −0.6 −0.4
3 −0.6 −0.4
4 −0.6 0.6
5 −0.6 0.6

Table 5.2.: Parameters for the toy example from Lauw et al. [79].

Note that in the example above, the estimated parameter values exactly reproduce the

scores from Table 5.1 when used in (5.2) with all εij = 0. Essentially, this means that no

random deviations at all are necessary to explain the reviewers’ scores. Therefore, this

example has to be considered extremely simple.

The following toy example is a bit more complex. Now, no parameter combination can

be given that exactly reproduces the observed scores yij .

Example 5.3. The purpose of this example is to give some impression of the effects of

discretization, i.e., of the influence of the operator D. The model parameters are now

known, Model (5.1) is simulated, yielding simulated scores yij . From these scores, the

parameters are re-estimated using the estimation method for the linear Model (5.2). As

104

5.2. Two-Way Classification Models

explained above, this linear model ignores the discretization. This simplification leads to

statistical errors, which will then be explored.

The model parameters are µ = 4.0, α1 = 2.5, α2 = 0.0, α3 = −0.5, α4 = −1.0, α5 = −1.0,

β1 = −1.0, β2 = −0.5, β3 = 0.0, β4 = 0.5, β5 = 0.5, and β6 = 0.5.

The incidence matrix is

(eij)1≤i≤I,1≤j≤J =


1 1 1 0 0 0

1 0 0 1 1 1

1 1 0 1 0 1

0 1 1 0 1 0

0 0 1 1 1 1

 .

Two discretization operators are employed: the first one, denoted by D1, transforms the

values µ + αi + βj + εij to the integers 0, 1, . . . , 10. The other operator, D2, transforms

these values to 0, 2, 4, . . . , 10. Negative values go to 0, values greater than 10 go to 10,

3.49 is mapped to 3, 3.5 to 4, etc.

The random errors εij are assumed to be Gaussian, with zero mean and standard devia-

tion σ, where the cases σ = 2 and σ = 3 are considered.

Table 5.3 shows the resulting biases (estimate minus true value) for the parameters βj .

The results are based on 1000 simulations of the model using SPSS. The biases for µ and

the αi are similar. The standard deviations of the estimates of the βj are in the order

of 1.2.

j βj
D1 D2

σ = 2 σ = 3 σ = 2 σ = 3

1 −1.0 0.017 0.028 0.025 0.056
2 −0.5 −0.022 −0.029 −0.022 −0.001
3 0.0 0.029 0.039 0.000 0.017
4 0.5 0,019 0.021 0.016 0.021
5 0.5 0.009 0.020 0.027 −0.015
6 0.5 −0.053 −0.079 −0.046 −0.078

Table 5.3.: Biases of the estimators of the βj for the second toy example by the linear
model

For this example the discretization errors are obviously small. A similar behavior also for

other examples, including larger ones can be found.

105

Chapter 5. Peer Reviewing

Additionally, the statistical fluctuations of the differences

yij − ŷij

are investigated, where the yij are obtained by discretization according to (5.1) and the

ŷij are the estimates calculated by (5.2) with εij = 0 and with αi and βj replaced by the

corresponding estimates. Even in the simulation with D2 and σ = 3, histograms as for

normal distributions for the residuals yij − ŷij are obtained, whose variance represents

the mean unexplained variance by the chosen model. This variance is clearly smaller

than σ2. This underlines a general tendency: the idea of ignoring the discretization in

the parameter estimation procedure does apparently not cause significant errors.

5.2.2. The Nonlinear Model: Varying Variances of Scores

The two-way classification model of Chapter 5.2.1 is very simple and, as the example to

be discussed in Chapter 5.3 will show, perhaps too simple because of the assumption that

the εij have all the same variance σ. This means that it is assumed that all reviewers act

with equal variability, which may be considered as unrealistic.

Additional positive parameters γi help to model the different reviewer variabilities.

Therefore, the following nonlinear model

yij = D (µ+ γi(αi + βj + εij)) for (i, j) ∈ E, (5.7)

is developed. It is, as in Chapter 5.2.1, analyzed without the operatorD as

yij = µ+ γi(αi + βj + εij) for (i, j) ∈ E. (5.8)

For the special case of γi ≡ 1, (5.8) coincides with (5.2). The term γi(αi + βj + εij)

in some sense models the interaction between reviewer ri and paper pj . This model is

inspired by the paper of Scheuermann et al [115].

In this nonlinear (in the parameters) model, reviewer ri’s noisy quality level βj + εij is,

just like in the linear model of Chapter 5.2.1, added to this reviewer’s systematic bias αi.

However, this result is transformed by multiplication with the reviewer-specific scaling

factor γi. This factor models ri’s individual rigor: in essence, γi describes by how much

reviewer ri’s review score changes, given a fixed change in (perceived) paper quality.

106

5.2. Two-Way Classification Models

Even though this nonlinear model is relatively simple, it allows to capture a wide range

of reviewer characteristics.

It was not possible to estimate simultaneously all parameters of the nonlinear Model (5.8).

This led to an approximate method: since the information about the variability of the

reviewer scores is contained in the empirical variances, the parameters γi were estimated

by the empirical standard deviations of the yij for fixed i. Using these empirical γi, the

remaining parameters µ, αi, and βj can be estimated by solving the linear model with

the same design matrix as in the linear case, but replacing the 1-elements representing

the yij by the corresponding γi (with the exception of those in the columns related to

µ).

5.2.3. Notes about the Nonlinear Model of AAAI’11

The linear model has previously been published in [108]. Also, a non-linear model was

poposed before [110, 108]. Unfortunately, there was a mistake in the motivation of the

non-linear model in these papers. Although the results were promising, the claim of a

maximum likelihood estimation was wrong for the non-linear model.

The log-likelihood function of yij = µ+ γi(αi + βi + εij) is

lnL(yij) =
∑

(i,j)∈E

ln(
1√

2πγiσ
)−

∑
(i,j)∈E

(µ+ γi(αi + βj)− yij)2

2γ2
i σ

2
. (5.9)

Accidentally, it was considered to be

lnL(yij) =
∑

(i,j)∈E

ln(
1√
2πσ

)−
∑

(i,j)∈E

(µ+ γi(αi + βj)− yij)2

2γ2
i σ

2
(5.10)

in [110, 108]. Of course,
∑

ln(1√
2πσ

) in (5.10) is a constant and can be omitted for

maximizing the log-likelihood function. On the other hand,
∑

ln(1√
2πγiσ

) in (5.9) depends

on γi and cannot be omitted. Moreover, this term could only be a constant for
∑

i
1/γi =

const which contradicts the assumption
∑

i γi = I in [110], unless all γi are constant, e.g.,

like in the linear model where γi = 1 for 1 ≤ i ≤ I.

Although this is not a maximum likelihood estimation for the non-linear model, this

model still minimizes the random error εij by

minimize
∑

(i,j)∈E

εij = minimize
∑

(i,j)∈E

(yij/γi − αi − βj)2

107

Chapter 5. Peer Reviewing

under the assumption 1/I
∑
γi = 1. Therefore, it is obviously still better than the naive

approach.

5.3. A Case Study

The following case study discusses data from the Third International Workshop on Com-

putational Social Choice (COMSOC-2010) that took place in September 2010 in Düssel-

dorf, Germany [36]. There were J = 57 submissions (where submissions that had to be

rejected on formal grounds are disregarded) and I = 20 reviewers. Each submission was

reviewed by at least two reviewers; a third reviewer was assigned to some submissions

later on, and one paper was even reviewed by four reviewers. The fact that these extra

reviews were somehow related to the evaluation of the papers in the first two reports is

ignored in the following. Table B.1 in Appendix B shows the data, the results of the

reviewing process. It contains the scores given by the reviewers to the papers, where “–”

means “no review.” The scores were integers between −3 and 3, which are here shifted

to the integers between 1 and 7, where 7 is the best possible score.

Tables 5.4 and 5.5 shows the scores estimated by means of the linear model of Chap-

ter 5.2.1. They correspond to the β̂j , shifted by a constant: in order to achieve the same

average scores as in the naive approach, the β̂j are shifted by µ̂lin = 5.153, which is the

estimate of µ in Equation (5.2).

According to the model assumption of having a constant σ, the variances of the review

scores should be equal. However, the values in Table B.1 seem to contradict this hypoth-

esis: compare, for example, the scores of reviewers r1 and r19!

The hypothesis of equal variances was tested by means of Levene’s test [82], which led to

a test statistics of 2.109 and a p-value of 0.009, with 19 and 108 degrees of freedom. Thus

the hypothesis of equal variances is clearly rejected and the model of Chapter 5.2.1 is cast

in doubt. Therefore, also the model of Chapter 5.2.2 was used.

Tables 5.4 and 5.5 also contains the paper scores for the nonlinear model, in columns 6

and 7. They were obtained as follows:

Using the estimated parameters α̂i, β̂i, and γ̂i, the values

ŷij = µ̂+ γ̂i(α̂i + β̂j)

108

5.3. A Case Study

Number of Naive approach Linear approach Nonlinear approach
paper score rank score rank score rank

1 7.000 1 7.557 1 7.282 2
2 7.000 2 6.831 8 6.807 7
3 7.000 3 7.557 2 7.282 3
4 7.000 4 6.315 15 6.099 19
5 6.500 5 7.305 3 7.013 4
6 6.500 6 6.815 9 6.338 12
7 6.500 7 6.602 10 6.614 9
8 6.500 8 7.195 4 7.003 5
9 6.500 9 6.965 6 6.682 8

10 6.500 10 6.249 17 5.878 23
11 6.500 11 6.123 19 5.945 22
12 6.333 12 6.588 12 6.436 11
13 6.000 13 6.891 7 6.446 10
14 6.000 14 5.552 28 5.757 27
15 6.000 15 5.697 25 6.097 20
16 6.000 16 6.598 11 6.255 15
17 6.000 17 5.124 33 5.482 30
18 6.000 18 6.528 13 6.966 6
19 6.000 19 5.989 20 4.660 36
20 6.000 20 5.783 24 5.816 26
21 6.000 21 6.303 16 6.136 17
22 6.000 22 6.483 14 6.223 16
23 6.000 23 7.130 5 7.499 1
24 6.000 24 6.228 18 6.282 14
25 5.500 25 5.846 22 6.115 18
26 5.500 26 4.162 43 4.375 43
27 5.500 27 5.964 21 6.076 21
28 5.500 28 5.509 31 5.725 29
29 5.500 29 4.644 38 4.815 34
30 5.500 30 5.687 26 6.287 13
31 5.500 31 4.917 34 5.051 33
32 5.500 32 4.095 46 4.297 46
33 5.500 33 5.791 23 5.823 24
34 5.500 34 4.162 44 4.342 44
35 5.500 35 5.514 30 5.471 31
36 5.500 36 5.527 29 5.819 25
37 5.000 37 4.911 35 4.583 38
38 5.000 38 5.243 32 5.345 32
39 4.667 39 5.644 27 5.751 28
40 4.500 40 4.769 36 4.545 40

Table 5.4.: The estimated scores from all three approaches (paper number 1 to 40)

109

Chapter 5. Peer Reviewing

Number of Naive approach Linear approach Nonlinear approach
paper score rank score rank score rank

41 4.500 41 4.264 41 4.637 37
42 4.333 42 3.796 47 4.319 45
43 4.333 43 4.668 37 4.529 41
44 4.333 44 4.349 39 4.481 42
45 4.000 45 4.271 40 4.669 35
46 4.000 46 4.136 45 4.146 47
47 3.500 47 2.344 54 2.290 55
48 3.500 48 3.047 49 3.208 52
49 3.500 49 4.238 42 4.572 39
50 3.333 50 3.718 48 4.137 48
51 3.250 51 2.936 51 3.360 51
52 3.000 52 3.009 50 3.371 50
53 3.000 53 2.903 52 2.981 53
54 3.000 54 2.729 53 2.796 54
55 2.500 55 1.702 56 1.640 57
56 1.500 56 0.644 57 2.006 56
57 1.000 57 2.034 55 3.496 49

Table 5.5.: The estimated scores from all three approaches (paper number 41 to 57)

were calculated. The averages

1

I

I∑
i=1

ŷij

are then the corresponding estimated paper scores. The α̂i and γ̂i are given in Table 5.6,

and an estimate value µ̂nonlin = 5.415 of µ in (5.8) is obtained.

The nonlinear model with the approximative parameter estimation really fits the data

better: the corresponding mean squared errors

1

n− 1

∑
(i,j)∈E

(yij − ŷij)2,

where n = 128 is the total number of reviews, are 0.453 for the linear model and 0.351

for the nonlinear model.

The acceptance threshold of the conference was around 4.5, based on the naive approach.

This led to acceptance of a total of 40 submissions, while 17 were rejected. Indeed, around

paper number 40 the scores for all three approaches decrease rapidly.

The parameters α̂i and γ̂i shown in Table 5.6 allow to evaluate the reviewers as well. Here,

they are discussed for some papers and some reviewers only, comparing their behavior

110

5.3. A Case Study

in the three approaches considered. According to the linear approach, reviewer r7 with

α̂7 = 1.6938 is the most lenient reviewer. In the nonlinear approach, too, reviewer r7 can

be considered as very lenient, with the relatively large values of α̂7 = 0.903 and γ̂7 = 1.378.

By contrast, reviewer r19 with α̂19 = −1.5247 (in the linear model) is rather harsh; this

is again similarly the case in the nonlinear model with α̂19 = −0.993, while the role of

the large parameter γ̂19 = 2.366 is a bit more difficult to explain.

Number i Linear model Nonlinear model
of reviewer α̂i α̂i γ̂i

1 0.2788 1.455 0.548
2 −0.5103 −0.472 2.000
3 −0.4230 −0.527 1.378
4 0.9775 0.461 1.472
5 −0.7399 −0.748 0.516
6 1.1115 0.557 1.033
7 1.6938 0.903 1.378
8 −0.0761 −0.304 1.380
9 0.0433 −0.150 0.548

10 0.0537 −0.221 1.862
11 −0.7427 −0.528 2.011
12 0.4695 0.168 2.191
13 0.1287 0.076 1.211
14 −1.1054 −0.834 1.549
15 −0.2627 1.543 0.516
16 1.2365 0.508 1.862
17 −0.5489 −0.349 2.309
18 0.6128 −0.032 1.155
19 −1.5247 −0.993 2.366
20 −0.6724 −0.512 1.366

Table 5.6.: The reviewers’ parameters.

The differences in modeling and reducing reviewer bias between the approaches result in

different paper rankings. Consider, for example, papers p17 and p23:

� p17 was (by good luck for its authors) reviewed by reviewers r7 and r10. As noted

above, reviewer r7 tends to be lenient, while reviewer r10 seems to be fair. Thus, pa-

per p17 has likely been ranked higher than merited in the naive approach. However,

the other approaches take r7’s leniency into account and rank p17 on position 33

(linear approach) and 30 (nonlinear approach). In the naive approach, it is on po-

sition 17. Therefore, consider a rather selective workshop which only had accepted

111

Chapter 5. Peer Reviewing

around 20 papers, p17 would have been accepted by the naive model, whereas it

would have been rejected by the linear and the nonlinear approach.

� p23 was reviewed by r5 and r19. It was bad luck for this paper to be reviewed by

reviewer r5, who can be considered harsh (with α̂5 = −0.7399 in the linear model

α̂5 = −0.748 and γ̂5 = 0.516 in the nonlinear model), and so p23 only got a 5

by r5. However, the notoriously harsh reviewer r19 gave this paper a score of 7, the

maximum value! In total, the probably very good paper p23 got an average score of

6 in the naive approach (which is blind to whether this paper’s reviewers are harsh

or not) and so ended up only on position 23 in the naive ranking, on position 5 in

the linear ranking, and on the top position in the nonlinear ranking.

5.4. Conclusions

This chapter shows that the classical (or naive) procedure of ranking scientific papers

based on scores can be greatly improved by little additional effort. Simple statistical

methods enable a fairer rating (and thus, ranking) based on the scores of potentially

biased, partially blindfolded reviewers. They work well also in cases where each paper is

reviewed only by a small number of reviewers; in particular, there is no need for every

reviewer to assess each paper.

The example with the COMSOC-2010 data shows clearly that the two statistical ap-

proaches yield more realistic paper scores and explain why disputable averaged scores

were obtained by the naive approach. Of course, the results should be considered with

care since in both statistical models the number of parameters is of similar magnitude as

the number of data points. Any statistical method can only provide some support to help

the decision-makers (usually the PC chairs) evaluating the reviewers’ scores of the pa-

pers. Decision-makers for a conference should make use of such support, but they should

also certainly never forgo their own judgment and scholarly common sense when selecting

papers to accept or to reject based on reviews and review scores.

The applied statistical methods also enable evaluation of the reviewers, and in the example

studied pretty clear statements can be made for some reviewers. This is a risky point

and should be done with care and courtesy, since the organizers of conferences have to

be grateful to the reviewers for their time and their difficult work.

112

Appendix A.

Alternative and Additional Proofs

A.1. MARA with utilities as bundles

This is an alternative proof for ESWObundle as suggested by an anonymous AAMAS 2010

reviewer. It is done via a reduction from the NP-complete problem Exact Cover, which

is defined as follows.

Exact Cover [72]

Given: A set S and a collection C = {S1, . . . , Sk} of subsets of S, i.e.,

Sj ⊆ S for 1 ≤ j ≤ k.

Question: Is there a subset C′ ⊆ C such that each element of S apperas

exactly once in C′?

Proof. (Theorem 3.2)

Membership to NP still is easy to see. To prove NP-hardness, let an instance (S, C) with

C = {S1, . . . , Sk} be given and consider the following reduction. There are k agents, all

of them have the same utilities u = u1 = . . . = uk. The resources are the elements of S,

i.e., R = S. The utilities u are formed by

u(R′) =

 1 if R′ = Sj for some j or R′ = ∅

0 otherwise

for each bundle R′ ⊆ R. The claim is that the egalitarian social welfare is exactly one, if

and only if there is an exact cover.

From right to left Assume there is an exact cover, i.e., there is a subset C′ ⊆ C with⋃
Sj∈C′ Sj = S and Si ∩ Sj = ∅ for all Si, Sj ∈ C′, Si 6= Sj . Each of these subsets

113

Appendix A. Alternative and Additional Proofs

can be assigned to an agent, while the remaining agents receive an empty bundle.

Since each agent has a utility of one for each of the sets Sj ∈ C as well as a utility

of one for the empty bundle, each agent can realize a utility of one. Therefore, the

egalitarian social welfare is one.

From left to right By contraposition, assume there is no exact cover. Since all resources

are to be assigned, there is some agent, who receives a bundle R′ which does not

coincide with any of the Sj , 1 ≤ j ≤ k. Therefore, this agent realizes a utility of

zero and hence, the egalitarian social welfare is zero.

This also proves Theorem 3.2. q.e.d.

Note, that NP-hardness of NPSWObundle can be obtained in the same way. This reduc-

tion has the disadvantage, that it cannot be used to prove DP-hardness of XUSWObundle

and XESWObundle, since mixing two instances would lead to a social welfare of zero if

one of the instances is a “no”-instance. Therefore, Lemma 2.4 cannot be applied. Of

course, there might be an extension to this proof to make Lemma 2.4 work but it is not

clear, whether this extension will still be shorter than the original proof presented in

Chapter 3.2. Note also, that this proof is only valid, if all resources have to be assigned,

otherwise the optimal solution is to assign no resources at all and the social welfare will

be one. Nevertheless, this proof additionally shows, that NP-hardness even holds, if all

agents have the same utilty functions.

The following proof is submitted to JAAMAS [93] and is an alternative proof of Theo-

rem 3.2 by a reduction proposed by an anonymous reviewer. It is somewhat similar to

the alternative proof above and slightly shorter than the original 3-SAT-based proof in

Chapter 3.2.

Proof. (Theorem 3.2)

For membership in NP see the original proof.

The hardness result is shown via a reduction from X3C [60], which is defined in Chap-

ter 4.2.

Given an instance (B,S) of X3C with B = {b1, . . . , b3q} and S = {S1, . . . , Sz}, define

q agents, a1, . . . , aq, one for each Si that would be involved in forming an exact cover

of B (if any exists), as well as one dummy agent a0. Thus, the set A = {a0, a1, . . . aq}
of n = q + 1 agents is obtained. For each element in B, define a resource, so the set of

resources is R = {r1, . . . , r3q} and consists of m = 3q elements, where rj corresponds to

bj ∈ B. Now, set the utilities of the agents aj in A, j 6= 0, which depend on the elements

114

A.1. MARA with utilities as bundles

of the collection S. For each j, 1 ≤ j ≤ n, and each bundle S ⊆ R, set uj(S) = 1 if

S = {rh, rk, r`} and there is some Si = {bh, bk, b`} in S, and set uj(S) = 0 otherwise. The

only agent with a nonzero utility for the empty set of resources is the dummy agent a0

whose utilities are given by u0(∅) = 1, u0(R) = q, and u0(S) = 0 for each S ⊆ R with

∅ 6= S 6= R.

The utility of a0 for the bundle R of all resources can be set to any positive integer value

in this proof. However, if this proof is used for proving Theorem 3.6 and Theorem 3.8,

a0 needs to have a utility of exactly q for this bundle.

In addition, choose the same parameter K = 1 for the instance of ESWObundle, namely

(A,R,U,K). It is easy to see that (A,R,U,K) can be computed in polynomial time from

(B,S), since each of the n agents has nonzero utilities for no more than z = |S| bundles.

Note that each yes-instance of X3C corresponds to an assignment of the resources in R

to the agents aj , 1 ≤ j ≤ n, as follows. If Si is contained in an exact cover S ′ ⊆ S of B,

then Si = {bh, bk, b`} and the agents aj , j 6= 0, have utility one for the related bundle

S = {rh, rk, r`} of resources. Since |S ′| = q, each of these agents can be assigned exactly

one of the bundles corresponding to S ′. Since S ′ is an exact cover of B, each resource is

assigned to some agent, and is assigned only once.

Conversely, assume that a no-instance of X3C is given. Then it is not possible to find a

subcollection S ′ of S such that each element of B is covered exactly once by the members

of S ′. Therefore, in every allocation at least one agent cannot receive any of the bundles

corresponding to the members of S as a whole and thus cannot realize any utility at all.

The claim is that there exists an allocation whose egalitarian social welfare is exactly

K = 1 if and only if there is an exact cover of B.

From left to right: Suppose there exists an allocation X with swe(X) = 1, so each

agent realizes a utility of at least one. This implies that a0 must be assigned the

empty bundle with utility one, while all other agents must realize a utility of one

by receiving one of the bundles {rh, rk, rl} corresponding to a set in S. Since these

q bundles assigned to a1, . . . , aq must be pairwise disjoint (as no resource can be

assigned to more than one agent), they correspond to an exact cover of B.

From right to left: Assume that there is an exact cover S ′ ⊆ S of B. In the corre-

sponding allocation X of bundles of resources, each of the agents a1, . . . , aq receives

a bundle corresponding to a member of S ′ and so can realize a utility of one. As-

signing the empty bundle to a0, also with utility one, swe(X) = 1 follows.

115

Appendix A. Alternative and Additional Proofs

q.e.d.

Please note, that an analogous proof applies to Theorem 3.5. Even though, the proof can

be extended to proof DP-completeness in Theorem 3.6 and Theorem 3.8.

A.2. MARA with k-additive utilities

As mentioned in Chapter 3.1, a reduction of Lipton et al. [83] is suitable to show

ESWO1-additive to be NP-complete. This reduction is from the well-known NP-complete

problem Partition(see, e.g., Karp [72] or Garey and Johnson [60]), which can also be

found in Chapter 4.1.1 and is defined as follows.

Partition

Given: A nonempty sequence c1, c2, . . . , cs of positive integers such

that
∑s

i=1 ci is even.

Question: Is there a subset I ⊆ S = {1, 2, . . . , s} such that∑
i∈I ci =

∑
i∈(S\I) ci?

So, given an instance (c1, c2, . . . , cs) of Partition, where C =
∑s

i=1 ci is even, construct

an instance (A,R,U, κ) of ESWO1-additive as follows.

Proof. (Proposition 3.10, see Litpon et al. [83])

There are two agents inA and s resources inR, henceA = {a1, a2} andR = {r1, r2, . . . , rs}.
Recall that each resource can be held by one agent only, since resources are indivisible

and nonshareable. For i ∈ {1, 2}, agent ai’s utilities are set to ui({rj}) = cj , 1 ≤ j ≤ s,

which means ai’s bid for the single resource rj is cj , and ui(∅) = 0. Finally, set κ = C/2.

Since egalitarian social welfare gives the utility of the agent that is worst off and since

the sum of all utilities equals C, it follows that there exists an allocation X ∈ Π2,s

such that swe(X) ≥ κ (in fact, even swe(X) = κ), if and only if there exists a sub-

set I ⊆ S = {1, 2, . . . , s} such that
∑

i∈I ci =
∑

i∈S\I ci (i.e., if and only if there is a

partition). q.e.d.

The same reduction except with κ chosen to be (C/2)2 can be used for NPSWO1-additive.

116

A.2. MARA with k-additive utilities

Proof. (Proposition 3.10)

If a partition exists, the product of the utilities both agents can realize in the correspond-

ing allocation is exactly (C/2)2, since the sum of all utilities equals C. Conversely, if there

does not exist any partition, then for all allocations X ∈ Π2,s there is some λX > 0 such

that one agent can realize a utility of C/2 + λX , whereas the other agent can realize only

C/2− λX in X. Hence, the Nash product is

(C/2 + λX) (C/2− λX) = (C/2)2 − λ2
X < (C/2)2 ,

which establishes NP-completeness of NPSWO1-additive. q.e.d.

The following proof is a quote from Chevaleyre [29].

Proof. (Lemma 3.13)

Firstly, the problem is certainly in NP, because checking whether the social

welfare of a given allocation exceeds a given threshold K can be checked in

polynomial time. We show NP-hardness by reducing the decision problem

underlying Maximum Independent Set to our problem. Given a graph

G = (V,E) and a rational number K, we want to establish whether the graph

has got an independent set V with cardinality |V | > K. Without loss of

generality, we may assume that no vertex in V is joined with itself by an edge

in E, because no solution V would contain such a vertex. We can map this

independent set problem to an instance of our decision problem by introducing

an agent for every vertex in V and a resource for every edge in E. We define

the utility coefficients in the k-additive form for every agent i as follows: Let

T be the set of resources corresponding T to edges in E that are adjacent to

the vertex corresponding to i. We define αi = 1 and there are no other utility

coefficients for agent i. Now every allocation A corresponds to an independent

set V and the utilitarian social welfare of A equals the cardinality of V . Hence,

there exists an independent set V with |V | > K iff there exists an allocation

A with sw(A) > K.

q.e.d.

117

Appendix A. Alternative and Additional Proofs

118

Appendix B.

Additional Information for Peer Reviewing

Algorithm 1 illustrates the quadratic program for the peer review process in Chapter 5.

The constraints are simplified by setting µ = 0 and αI = 0 instead of solving with con-

ditions (5.5) and (5.6) directly. As already mentioned in Chapter 5.2.1, the obtained

solution can then easily be transformed, without affecting the value of the target func-

tion.

Defining a vector

x =
(
β̂1 . . . β̂J ˆ̃γ1 . . . ˆ̃γI α̂1 . . . α̂I

)T
,

of the variables to estimate, the following QP is obtained:

minimize
1

2
xTQx (B.1)

subject to Ax ≥ b

with a square matrix Q (see lines 2–13 of Algorithm 1 below), and a matrix A representing

the constraints.

In this specific QP, the matrix Q is at least positive semi-definite, i.e., all eigenvalues of

A are nonnegative, because it can be written as H ·HT (see Algorithm 1 below for the

definition of matrix H).

As mentioned in Chapter 2.3.2, a suitable solver is MINQ, which is called in line 19 of

Algorithm 1.

The scores yij for (i, j) ∈ E are assumed to be nonnegative for line 5 to work. Any

negative number (e.g., −1) at position (i, j) in the input matrix M indicates that reviewer

ri did not review submission pj (i.e., (i, j) 6∈ E). M thus encodes both E and the review

scores yij .

119

Appendix B. Additional Information for Peer Reviewing

Algorithm 1 Computing the estimated scores

1: Input: Y ∈ QI×J // Y contains the given scores
2: H =

[
0
]
∈ Q(2I+J)×(I·J)

3: for i ∈ {1, 2, . . . , I} do
4: for j ∈ {1, 2, . . . , J} do
5: if Yi,j ≥ 0 then
6: Hj,(j−1)·I+i = 1
7: HJ+i,(j−1)·I+i = −Yi,j
8: HJ+I+i,(j−1)·I+i = 1
9: end if

10: end for
11: end for
12: remove the last row from H // normalization
13: Q = 2 ·H ·HT

14: h1 =
(
0 · · · 0

)
∈ QJ

15: h2 =
(
1 · · · 1

)
∈ QI

16: h3 =
(
0 · · · 0

)
∈ QI−1

17: A =


h1

1
I · h2 h3

h1 −1
I · h2 h3

h1 UI h3

h1 −UI h3


18: b =

(
1 −1 γ1 . . . γI −γ1 . . . −γI

)T
19: solve: min 1

2x
TQx subject to Ax ≥ b

20: β̂ =
(
x1 · · · xJ

)T
21: Output: β̂ ∈ Qn

Note, that the algorithm works for all three variants of the problem, where different

contraints in line 17 and line 18 are used; see the following remark.

Remark B.1. For the linear model, simply set all values γi, 1 ≤ i ≤ I in line 18 of

Algorithm 1 to one.

For AAAI-11’s nonlinear model [110], omit the rows with UI in matrix A and omit the

γi, 1 ≤ i ≤ I in vector b.

For the new nonlinear model, replace the γi, 1 ≤ i ≤ I in vector b (line 18) by the values

obtained by the estimation in the first step.

120

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20
p1 − − − − − − − − − − 7 − − − 7 − − − − 7
p2 7 − − − − − − − − 7 − − − − − − − − − −
p3 − − − − − − − − − − 7 − − − 7 − − − − 7
p4 − − − − − − − − − − − − 7 − − 7 − − − −
p5 − 7 − − − − − − − − − − − 6 − − − − − −
p6 − − − − − − − − − − − 7 − 6 − − − − − −
p7 − − − − − − − − − 7 − − − − 6 − − − − −
p8 − − − − − − − − − − − − 7 − − − − − 6 −
p9 − − − − − − − − − − − − − − 7 − − − − 6
p10 − − − − 6 − − − − − − − − − − 7 − − − −
p11 6 − − − − − − − − − − 7 − − − − − − − −
p12 7 − − − − − − − − 6 − − − 6 − − − − − −
p13 − − − − − − − − − − − − − − 7 − − − 5 −
p14 6 − − − − − − − − − − − − − − − − 6 − −
p15 − 6 − − − 6 − − − − − − − − − − − − − −
p16 − 6 − − − − − − − − 6 − − − − − 6 − − −
p17 − − − − − − 6 − − 6 − − − − − − − − − −
p18 − − − − − − − − 6 − − − − 6 − − − − − −
p19 6 − − − − − − − − − − − − − 6 − − − − −
p20 − − − 6 − − − − − − − − − − − − 6 − − −
p21 − − − − 6 − − − − − − − 6 − − − − − − −
p22 − − 6 − − − − − − − − − − − − − 6 − − −
p23 − − − − 5 − − − − − − − − − − − − − 7 −
p24 7 − − − 5 − − − − − − − − − − − − − − −
p25 − − − − 5 − − − 6 − − − − − − − − − − −
p26 − − − 6 − − 5 − − − − − − − − − − − − −
p27 − 6 5 − − − − − − − − − − − − − − − − −
p28 − − − − − − − 5 − 6 − − − − − − − − − −
p29 − − − − − − − − − − − 5 − − − 6 − − − −
p30 − − 6 − − − − − 5 − − − − − − − − − − −
p31 − − − − − − − 5 − − − − − − − 6 − − − −
p32 − − − − − 5 6 − − − − − − − − − − − − −
p33 − 5 − − − − − 6 − − − − − − − − − − − −
p34 − − − 5 − − 6 − − − − − − − − − − − − −
p35 − − − − − − − 5 6 − − − − − − − − − − −
p36 − − − − − − − − − − − − − − − − − 5 − 6
p37 − − − − − − − − 5 − − − 5 − − − − − − −
p38 − − − − − 7 − − − − 5 − − 3 − − − − − −
p39 − − − − − − − − − − 7 − − − − − − − 3 4
p40 − − − − − − − − − − − − 5 − − − − − − 4
p41 − 4 − 5 − − − − − − − − − − − − − − − −
p42 − − − − − 4 − − − − 3 − − − − 6 − − − −
p43 − − − − 5 − − − − − 3 5 − − − − − − − −
p44 − − 4 − − 6 − − − − 3 − − − − − − − − −
p45 − − − − − − − − − − 2 5 − − − − 5 − − −
p46 − − 3 − − 6 − − − − − − − 3 − − − − − −
p47 − − − − − − 3 − − − − − − − − − − 4 − −
p48 − − − 5 − − − 2 − − − − − − − − − − − −
p49 − − − − − − − − 5 − − − − − − − − − 2 −
p50 − − − − − − − − − − 3 − 4 − − − 3 − − −
p51 − 1 − − − − 7 − − − − − − − − − 1 4 − −
p52 − − − − − − − 4 − 2 − − − − − − − − − −
p53 − − 3 − − − − − − − − − − − − − − 3 − −
p54 − − − − − − − 3 − − − − − − − − − 3 − −
p55 − − − 2 − − − − − − − − − − − − − 3 − −
p56 − − − − − − − − − − − 1 − − − 2 − − − −
p57 − − − − − − − − − − − − − − − − 1 − 1 −

Table B.1.: Input data from the review process for COMSOC-2010

121

Bibliography

[1] A. Altman and M. Tennenholtz. Ranking systems: the pagerank axioms. In Pro-

ceedings of the 6th ACM Conference on Electronic Commerce, pages 1–8, New York,

NY, USA, 2005. ACM.

[2] A. Anastasi and S. Urbina. Psychological Testing. Prentice Hall, 1997.

[3] J. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of

manipulating an election. Social Choice and Welfare, 6(3):227–241, July 1989.

[4] J. Bartholdi III, C. Tovey, and M. Trick. How hard is it to control an election?

Mathematical Comput. Modelling, 16(8/9):27–40, 1992.

[5] D. Baumeister. Computational Complexity in Three Areas of Computational Social

Choice: Possible Winners, Unidirectional Covering Sets, and Judgment Aggrega-

tion. Ph.d. thesis, Heinrich-Heine-Universität Düsseldorf, 2012.

[6] D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.

Computational aspects of approval voting. In J. Laslier and R. Sanver, editors,

Handbook on Approval Voting, chapter 10, pages 199–251. Springer, 2010.

[7] D. Baumeister, P. Faliszewski, J. Lang, and J. Rothe. Campaigns for lazy voters:

Truncated ballots. In Proceedings of the 11th International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 577–584. IFAAMAS, June 2012.

[8] D. Baumeister, M. Roos, and J. Rothe. Computational complexity of two variants

of the possible winner problem. In Proceedings of the 10th International Joint Con-

ference on Autonomous Agents and Multiagent Systems, pages 853–860. IFAAMAS,

May 2011.

[9] D. Baumeister, M. Roos, J. Rothe, L. Schend, and L. Xia. The possible winner

problem with uncertain weights. In Proceedings of the 20th European Conference

on Artificial Intelligence, pages 133–138. IOS Press, August 2012.

123

Bibliography

[10] D. Baumeister, M. Roos, J. Rothe, L. Schend, and L. Xia. The possible winner

problem with uncertain weights. In F. Brandt and P. Faliszewski, editors, Pro-

ceedings of the 4th International Workshop on Computational Social Choice, pages

49–60. AGH University of Science and Technology, Kraków, Poland, September

2012.

[11] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P. Young. Generalized boolean

hierarchies and boolean hierarchies over RP. In Proceedings of the 7th Conference on

Fundamentals of Computation Theory, pages 35–46. Springer-Verlag Lecture Notes

in Computer Science #380, August 1989.

[12] I. Bezáková and V. Dani. Allocating indivisible goods. SIGecom Exchanges, 5(3):11–

18, 2005.

[13] L. Blumrosen and N. Nisan. On the computational power of iterative auctions.

In Proceedings of the 6th ACM Conference on Electronic Commerce, pages 29–43.

ACM Press, 2005.

[14] L. Blumrosen and N. Nisan. Combinatorial auctions. In N. Nisan, T. Roughgarden,

E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 11, pages

267–299. Cambridge University Press, New York, NY, USA, 2007.

[15] S. Bouveret. Allocation et partage équitables de ressources indivisibles:

modélisation, complexité et algorithmique. Ph.d. thesis, Université de Toulouse,

2007. (in French).

[16] S. Bouveret, U. Endriss, and J. Lang. Fair division under ordinal preferences:

Computing envy-free allocations of indivisible goods. In Proceedings of the 19th

European Conference on Artificial Intelligence, pages 387–392. IOS Press, 2010.

[17] S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of indivisible

goods: logical representation and complexity. J. Artif. Int. Res., 32(1):525–564,

June 2008.

[18] S. Bouveret, M. Lemâıtre, H. Fargier, and J. Lang. Allocation of indivisible goods:

a general model and some complexity results. In F. Dignum, V. Dignum, S. Koenig,

S. Kraus, M. P. Singh, and M. Wooldridge, editors, Proceedings of the 4th Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems, pages

1309–1310, Utrecht, The Netherlands, July 2005. ACM. (short paper).

124

Bibliography

[19] S. Brams and P. Fishburn. Voting procedures. In K. Arrow, A. Sen, and K. Suzu-

mura, editors, Handbook of Social Choice and Welfare, volume 1, pages 173–236.

North-Holland, 2002.

[20] S. J. Brams and M. R. Sanver. Voting systems that combine approval and prefer-

ence. In S. J. Brams, W. V. Gehrlein, and F. S. Roberts, editors, The Mathematics

of Preference, Choice and Order, Studies in Choice and Welfare, pages 215–237.

Springer Berlin Heidelberg, 2009.

[21] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Reso-

lution. Cambridge University Press, 1996.

[22] F. Brandt, V. Conitzer, and U. Endriss. Computational social choice. In G. Weiss,

editor, Multiagent Systems, pages 213–283. MIT Press, 2013.

[23] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,

and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM Journal

on Computing, 17(6):1232–1252, 1988.

[24] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner,

and G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal on Com-

puting, 18(1):95–111, 1989.

[25] J. Chamberlin and M. Cohen. A linear inequality method of establishing certain

social choice conjectures. Public Choice, 33(2):5–16, 1978.

[26] R. Chang and J. Kadin. On computing boolean connectives of characteristic func-

tions. Mathematical systems theory, 28(3):173–198, 1995.

[27] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding via

exchange properties of combinatorial structures. In Proceedings of the 51st IEEE

Symposium on Foundations of Computer Science, pages 575–584. IEEE Computer

Society, October 2010.

[28] Y. Chevaleyre, P. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J. Rodŕıguez-Aguilar, and P. Sousa. Issues in multiagent resource

allocation. Informatica, 30:3–31, 2006.

[29] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource alloca-

tion with k-additive utility functions. In Proceedings of the DIMACS-LAMSADE

Workshop on Computer Science and Decision Theory, volume 3 of Annales du

LAMSADE, pages 83–100, 2004.

125

Bibliography

[30] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource alloca-

tion in k-additive domains: Preference representation and complexity. Annals of

Operations Research, 163:49–62, 2008.

[31] Y. Chevaleyre, U. Endriss, K. Lang, and N. Maudet. A short introduction to

computational social choice. In J. Leeuwen, G. Italiano, W. Hoek, C. Meinel,

H. Sack, and F. Plášil, editors, SOFSEM 2007: Theory and Practice of Computer

Science, volume 4362 of Lecture Notes in Computer Science, pages 51–69. Springer

Berlin Heidelberg, 2007.

[32] Y. Chevaleyre, J. Lang, N. Maudet, and J. Monnot. Possible winners when new

candidates are added: The case of scoring rules. In M. Fox and D. Poole, editors,

Proceedings of the 24th AAAI Conference on Artificial Intelligence, pages 762–767.

AAAI Press, July 2010.

[33] Y. Chevaleyre, J. Lang, N. Maudet, and G. Ravilly-Abadie. Compiling the votes of

a subelectorate. In C. Boutilier, editor, Proceedings of the 21st International Joint

Conference on Artificial Intelligence, pages 97–102, July 2009.

[34] R. Cohen and M. Wserdlik. Psychological Testing and Assessment. McGraw Hill,

2005.

[35] V. Conitzer, M. Rognlie, and L. Xia. Preference functions that score rankings

and maximum likelihood estimation. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence, pages 109–115. IJCAI, July 2009.

[36] V. Conitzer and J. Rothe, editors. Proceedings of the 3rd International Workshop

on Computational Social Choice. Universität Düsseldorf, 2010.

[37] V. Conitzer and T. Sandholm. Complexity of manipulating elections with few

candidates. In 18th national conference on Artificial intelligence, pages 314–319,

Menlo Park, CA, USA, 2002. American Association for Artificial Intelligence.

[38] V. Conitzer and T. Sandholm. Common voting rules as maximum likelihood esti-

mators. In Proceedings of the 21st Annual Conference on Uncertainty in Artificial

Intelligence, pages 145–152. AUAI Press, 2005.

[39] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates

hard to manipulate? Journal of the ACM, 54(3), June 2007.

[40] V. Conitzer, T. Sandholm, and P. Santi. Combinatorial auctions with k-wise de-

pendent valuations. In Proceedings of the 20th National Conference on Artificial

Intelligence, pages 248–254. AAAI Press, 2005.

126

Bibliography

[41] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of Computing, STOC ’71, pages 151–158,

New York, NY, USA, 1971. ACM.

[42] G. B. Dantzig. Linear Programming and Extensions. A Rand Corporation research

study. Princeton University Press, 1965.

[43] S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for combina-

torial auctions with complement-free bidders. Mathematics of Operations Research,

35(1):1–13, 2010.

[44] S. Dobzinski and M. Schapira. An improved approximation algorithm for combi-

natorial auctions with submodular bidders. In Proceedings of the 17th ACM-SIAM

Symposium on Discrete Algorithms, pages 1064–1073. ACM Press, 2006.

[45] J. Douceur. Paper rating vs. paper ranking. ACM SIGOPS Operating Systems

Review, 43:117–121, 2009.

[46] N. Draper and H. Smith. Applied Regression Analysis. Wiley Series in Probability

and Statistics. John Wiley & Sons, 3rd edition, 1998.

[47] P. Dunne, M. Wooldridge, and M. Laurence. The complexity of contract negotia-

tion. Artificial Intelligence, 164(1–2):23–46, 2005.

[48] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In Proceedings of the

2nd International Symposium on Algorithmic Game Theory, pages 299–310, Berlin,

Heidelberg, 2009. Springer-Verlag.

[49] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in elections. In Proceedings of the

24th AAAI Conference on Artificial Intelligence, pages 768–773. AAAI Press, July

2010.

[50] U. Endriss, U. Grandi, and D. Porello. Complexity of judgment aggregation: safety

of the agenda. In Proceedings of the 9th International Joint Conference on Au-

tonomous Agents and Multiagent Systems, pages 359–366, Richland, SC, 2010.

IFAAMAS.

[51] G. Erdélyi, L. Piras, and J. Rothe. The complexity of voter partition in Bucklin

and fallback voting: Solving three open problems. In Proceedings of the 10th Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems, pages

837–844. IFAAMAS, May 2011.

127

Bibliography

[52] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of bribery

in elections. In Proceedings of the 21st National Conference on Artificial Intelli-

gence, pages 641–646. AAAI Press, July 2006.

[53] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is bribery in

elections? Journal of Artificial Intelligence Research, 35(1):485–532, 2009.

[54] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Multimode control attacks

on elections. Journal of Artificial Intelligence Research, 40:305–351, 2011.

[55] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Llull and

Copeland voting computationally resist bribery and constructive control. Journal

of Artificial Intelligence Research, 35(1):275–341, 2009.

[56] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. A richer un-

derstanding of the complexity of election systems. In S. Ravi and S. Shukla, ed-

itors, Fundamental Problems in Computing: Essays in Honor of Professor Daniel

J. Rosenkrantz, pages 375–406. Springer Netherlands, 2009.

[57] P. Faliszewski and A. Procaccia. Ai’s war on manipulation: Are we winning? AI

Magazine, 31(4):53–64, 2010.

[58] D. Foley. Resource Allocation and the Public Sector. Yale Economics Essays,

7:45–98, 1967.

[59] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,

1962.

[60] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.

[61] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica,

41(4):587–601, 1973.

[62] J. Gill. Computational complexity of probabilistic turing machines. SIAM Journal

on Computing, 6(4):675–695, 1977.

[63] D. Golovin. Max-min fair allocation of indivisible goods. Technical Report CMU-

CS-05-144, School of Computer Science, Carnegie Mellon University, June 2005.

[64] L. Hačijan. A polynomial algorithm in linear programming. Soviet Math. Dokl.,

20:191–194, 1979.

128

Bibliography

[65] R. Haenni. Aggregating referee scores: An algebraic approach. In U. Endriss and

P. Goldberg, editors, Proceedings of the 2nd International Workshop on Computa-

tional Social Choice, pages 277–288. University of Liverpool, 2008.

[66] L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer

and System Sciences, 39(3):299–322, 1989.

[67] E. Hemaspaandra, L. Hemaspaandra, and C. Menton. Search versus decision for

election manipulation problems. In N. Portier and T. Wilke, editors, Symposium

on Theoretical Aspects of Computer Science, volume 20 of Leibniz International

Proceedings in Informatics, pages 377–388. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2013.

[68] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson

elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.

Journal of the ACM, 44(6):806–825, 1997.

[69] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The com-

plexity of precluding an alternative. Artificial Intelligence, 171(5–6):255–285, 2007.

[70] L. Hemaspaandra and J. Rothe. Unambiguous computation: Boolean hierarchies

and sparse Turing-complete sets. SIAM Journal on Computing, 26(3):634–653,

June 1997.

[71] F. Jarre and J. Stoer. Optimierung. Springer-Lehrbuch. Springer-Verlag, 2004. (in

German).

[72] R. Karp. Reducibilities among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85–103, 1972.

[73] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor,

Inequalities, volume III, pages 159–175. Academic Press, New York, 1972.

[74] K. Koch. Parameter Estimation and Hypothesis Testing in Linear Models. Springer,

2nd edition, 1999.

[75] K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Pro-

ceedings of the IJCAI-05 Workshop on Advances in Preference Handling, pages

124–129, 2005.

[76] M.K. Kozlov, S.P. Tarasov, and L.G. Khachiyan. Polynomial solvability of convex

quadratic programming. Doklady Akademiia Nauk SSSR, 248, 1979.

129

Bibliography

[77] Lirong L. Xia and Vincent Conitzer. Determining possible and necessary winners

under common voting rules given partial orders. In Proceedings of the 23rd National

Conference on Artificial Intelligence, pages 196–201. AAAI Press, 2008.

[78] J. F. Laslier. Tournament Solutions and Majority Voting. Studies in Economic

Theory. Springer-Verlag, Berlin, Germany, 1997.

[79] H. Lauw, E. Lim, and K. Wang. Summarizing review scores of “unequal” reviewers.

In Proceedings of the 7th SIAM International Conference on Data Mining, pages

539–544. SIAM, April 2007.

[80] H. Lauw, E. Lim, and K. Wang. Bias and controversy in evaluation systems. IEEE

Transactions on Knowledge and Data Engineering, 20:1490–1504, 2008.

[81] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreas-

ing marginal utilities. In Proceedings of the 3rd ACM Conference on Electronic

Commerce, pages 18–28. ACM Press, 2001.

[82] H. Levene. Robust tests for equality of variances. In I. Olkin, S. Ghurye, W. Hoeffd-

ing, W. Madow, and H. Mann, editors, Contributions to Probability and Statistics:

Essays in Honor of Harold Hotelling, pages 278–292. Stanford University Press,

Stanford, CA, 1960.

[83] R. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair alloca-

tions of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic

Commerce, pages 125–131. ACM Press, 2004.

[84] C. List and P. Pettit. Aggregating sets of judgments: An impossibility result.

Economics and Philosophy, 18:89–110, March 2002.

[85] F. Mattern. Bibliometric evaluation of computer science – problems and pitfalls. In

Proceedings of the 4th Annual European Computer Science Summit, October 2008.

(nonarchival proceedings).

[86] D. McGarvey. A theorem on the construction of voting paradoxes. Econometrica,

21(4):608–610, 1953.

[87] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM

Journal on Optimization, 2(4):575–601, 1992.

[88] A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with

squaring requires exponential space. In Proceedings of the 13th IEEE Symposium

on Switching and Automata Theory, pages 125–129, 1972.

130

Bibliography

[89] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2004.

[90] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Complexity and approximability

of egalitarian and Nash product social welfare optimization in multiagent resource

allocation. In Proceedings of the 6th European Starting AI Researcher Symposium.

IOS Press, August 2012.

[91] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Complexity and approximability

of social welfare optimization in multiagent resource allocation. In Proceedings of

the 11th International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 1287–1288. IFAAMAS, June 2012. (short paper).

[92] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Complexity and approximability

of social welfare optimization in multiagent resource allocation. In F. Brandt and

P. Faliszewski, editors, Proceedings of the 4th International Workshop on Compu-

tational Social Choice, pages 335–346. AGH University of Science and Technology,

Kraków, Poland, September 2012.

[93] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Computational complexity and

approximability of social welfare optimization in multiagent resource allocation.

Autonomous Agents and Multi-Agent Systems, 28(2):256–289, 2014.

[94] N. Nguyen, M. Roos, and J. Rothe. Exact optimization of social welfare by the

Nash product is DP-complete. In Website Proceedings of the 12th International

Symposium on Artificial Intelligence and Mathematics, January 2012.

[95] T. Nguyen, M. Roos, and J. Rothe. A survey of approximability and inapproxima-

bility results for social welfare optimization in multiagent resource allocation. In

Website Proceedings of the 12th International Symposium on Artificial Intelligence

and Mathematics, January 2012.

[96] T. Nguyen, M. Roos, and J. Rothe. A survey of approximability and inapprox-

imability results for social welfare optimization in multiagent resource allocation.

Annals of Mathematics and Artificial Intelligence, 68(1–3):65–90, 2013.

[97] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, New York, NY, USA, 2007.

[98] J. A. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Oper-

ations Research. Springer, New York, 1999.

[99] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

131

Bibliography

[100] C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets

of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984.

[101] E. Pedhazur and L. Pedhazur Schmelkin. Measurement, Design, and Analysis: An

Integrated Approach. Lawrence Erlbaum Associates, 1991.

[102] M. Pini, F. Rossi, K. Venable, and T. Walsh. Aggregating partially ordered pref-

erences. Journal of Logic and Computation, 19(3):475–502, 2009.

[103] M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.

[104] S. Ramezani and U. Endriss. Nash social welfare in multiagent resource allocation.

In Agent-Mediated Electronic Commerce: Designing Trading Strategies and Mecha-

nisms for Electronic Markets, volume 59 of Lecture Notes in Business Information

Processing, pages 117–131. Springer-Verlag, 2010.

[105] T. Riege and J. Rothe. Completeness in the boolean hierarchy: Exact-Four-

Colorability, minimal graph uncolorability, and exact domatic number problems

– a survey. Journal of Universal Computer Science, 12(5):551–578, 2006.

[106] M. Roos and J. Rothe. Complexity of social welfare optimization in multiagent

resource allocation. In Proceedings of the 9th International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 641–648. IFAAMAS, May 2010.

[107] M. Roos and J. Rothe. Introduction to computational complexity. In A. Holder,

editor, Mathematical Programming Glossary. INFORMS Computing Society, March

2010.

[108] M. Roos, J. Rothe, J. Rudolph, B. Scheuermann, and D. Stoyan. A statistical

approach to calibrating the scores of biased reviewers: The linear vs. the nonlinear

model. In Website proceedings of the 6th Multidisciplinary Workshop on Advances

in Preference Handling, August 2012.

[109] M. Roos, J. Rothe, J. Rudolph, B. Scheuermann, and D. Stoyan. A statistical

approach to calibrating the scores of biased reviewers of scientific papers. submitted

to Scientometrics, under review.

[110] M. Roos, J. Rothe, and B. Scheuermann. How to calibrate the scores of biased

reviewers by quadratic programming. In Proceedings of the 25th AAAI Conference

on Artificial Intelligence, pages 255–260. AAAI Press, August 2011.

[111] J. Rothe. Exact complexity of Exact-Four-Colorability. Information Processing

Letters, 87(1):7–12, 2003.

132

Bibliography

[112] J. Rothe. Complexity Theory and Cryptology. An Introduction to Cryptocomplexity.

EATCS Texts in Theoretical Computer Science. Springer-Verlag, 2005.

[113] J. Rothe, D. Baumeister, C. Lindner, and I. Rothe. Einführung in Computational

Social Choice. Spektrum Akademischer Verlag GmbH, 2011. (in German).

[114] M. A. Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and

correspondence theorems for voting procedures and social welfare functions. Journal

of Economic Theory, 10(2):187–217, April 1975.

[115] B. Scheuermann, W. Kiess, M. Roos, F. Jarre, and M. Mauve. On the time synchro-

nization of distributed log files in networks with local broadcast media. IEEE/ACM

Transactions on Networking, 17(2):431–444, 2009.

[116] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, 2009.

[117] R. Sokal and F. Rohlf. Biometry: The Principles and Practice of Statistics in

Biological Research. W. H. Freeman, 4th edition, 2012.

[118] L. Stockmeyer. Planar 3-colorability is NP-complete. Sigact News, 5(3):19–25, July

1973.

[119] V. Vazirani. Approximation Algorithms. Springer-Verlag, second edition, 2003.

[120] K. Wagner. More complicated questions about maxima and minima, and some

closures of NP. Theoretical Computer Science, 51:53–80, 1987.

[121] T. Walsh. Uncertainty in preference elicitation and aggregation. In Proceedings

of the 22nd National Conference on Artificial Intelligence, pages 3–8. AAAI Press,

2007.

[122] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2011.

[123] G. Woeginger. A polynomial-time approximation scheme for maximizing the mini-

mum machine completion time. Operations Research Letters, 20(4):149–154, 1997.

[124] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley and Sons, 2nd

edition, 2009.

[125] L. Xia and V. Conitzer. Compilation complexity of common voting rules. In

M. Fox and D. Poole, editors, Proceedings of the 24th AAAI Conference on Artificial

Intelligence. AAAI Press, 2010.

133

Bibliography

[126] L. Xia and V. Conitzer. Determining possible and necessary winners given partial

orders. Journal of Artificial Intelligence Research, 41:25–67, 2011.

[127] L. Xia and V. Conitzer. A maximum likelihood approach towards aggregating par-

tial orders. In Proceedings of the 22nd International Joint Conference on Artificial

Intelligence, pages 446–451. IJCAI, July 2011.

[128] L. Xia, V. Conitzer, and J. Lang. Aggregating preferences in multi-issue domains

by using maximum likelihood estimators. In Proceedings of the 9th International

Joint Conference on Autonomous Agents and Multiagent Systems, pages 399–408.

IFAAMAS, May 2010.

[129] L. Xia, J. Lang, and J. Monnot. Possible winners when new alternatives join: new

results coming up! In Proceedings of the 10th International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 829–836, Richland, SC, 2011.

International Foundation for Autonomous Agents and Multiagent Systems.

[130] H. P. Young and A. Levenglick. A consistent extension of condorcet’s election

principle. SIAM Journal on Applied Mathematics, 35(2):285–300, 1978.

134

	Titlepage
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Notation
	Complexity Theory
	Central Complexity Classes and Reducibility
	The Boolean Hierarchy over NP
	The Polynomial Hierarchy
	Other Classes

	Optimization Problems
	Linear Programming
	Quadratic Programming

	Computational Social Choice
	Multiagent Resource Allocation
	Voting
	Preference Aggregation

	Complexity of Multiagent Resource Allocation
	Results and Related Work
	Social Welfare Optimization with Utilities as Bundles
	Social Welfare Optimization with k-additive Utilities
	(In-)Approximability of Social Welfare

	Complexity of Possible Winner Problems
	Possible Winner with Respect to the Addition of New Alternatives
	Results for Possible co-Winners
	Results for Unique Winners

	The Possible Winner Problem with Uncertain Weights
	The Possible Winner Problem Under Uncertain Voting System

	Peer Reviewing
	Model Assumptions and an Example
	Two-Way Classification Models
	The Linear Model: Identical Variances of Scores
	The Nonlinear Model: Varying Variances of Scores
	Notes about the Nonlinear Model of AAAI'11

	A Case Study
	Conclusions

	Alternative and Additional Proofs
	MARA with utilities as bundles
	MARA with k-additive utilities

	Additional Information for Peer Reviewing
	Bibliography

