
Approximability and Inapproximability of

Social Welfare Optimization in Multiagent

Resource Allocation

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Trung Thanh Nguyen

aus Hai Phong, Vietnam

Düsseldorf, im Juli 2013

Aus dem Institut für Informatik

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Jörg Rothe

Heinrich-Heine-Universität Düsseldorf

Koreferent: Prof. Dr. Egon Wanke

Heinrich-Heine-Universität Düsseldorf

Tag der mündlichen Prüfung: 21.11.2013

To my wife and my daughter

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne uner-
laubte Hilfe angefertigt und diese in der vorliegenden oder in ähnlicher Form noch bei
keiner anderen Institution eingereicht habe.

Teile dieser Arbeit wurden bereits in den folgenden Schriften veröffentlicht bzw. zur
Publikation angenommen: [NRR12, NNRR12b, NRR, NNRR12a, NNRR12c, NR13b,
NR13a, NNRR, NR]. Andere Teile dieser Arbeit sind derzeit eingereicht: [BBL+].

Düsseldorf, 18. Juli 2013

Trung Thanh Nguyen

Acknowledgments

This thesis is finished after three years of research at the Complexity Theory and Cryp-

tology Group of the Department of Computer Science at the Heinrich Heine University

of Düsseldorf.

I would like to thank first and foremost Prof. Jörg Rothe for introducing me to the field

of Computational Social Choice, especially in Muliagent Resource Allocation, and for

being a wonderful supervisor. I am very grateful to him for his great inspiration, patient

guidance, and boundless support throughout my PhD study. His great knowledge of

English also helped me so much in writing our articles. Without his supervision, I would

never have had the chance to achieve the success in the scientific community. I would

also like to thank Prof. Egon Wanke for being a referee for this thesis.

I also wish to express my deep gratitude to Prof. Robert Wisbauer for giving me a

chance to study in Germany, a very beautiful country. His great encouragement and

advice helped me a lot during the time of my study.

Many thanks also go to all my coauthors, including Jörg Rothe, Magnus Roos, Nhan-

Tam Nguyen, Dorothea Baumeister, Jérôme Lang, Sylvain Bouveret and Abdallah Saf-

fidine. I further thank all my colleagues at the Department of Computer Science of

the Heinrich-Heine-Universität-Düsseldorf: Dorothea Baumeister, Claudia Forstinger,

Guido Königstein, Anja Rey, Magnus Roos, Jörg Rothe and Lena Schend. Magnus

Roos, thank you very much for sharing the room, thoughts, and good times. I am also

thankful for my friends, Chan Khon Huynh and Thanh Phuc Luu, for proofreading

parts of this thesis.

My research was supported by the Vietnamese Government under project 322. I also

thank Deutscher Akademischer Austausch Dienst for the financial support for the Ger-

man courses within three months in Vietnam and other two months in Germany.

I am deeply grateful to my parents for their continuous encouragement and support, to

my wife and daughter who held me up with their endless love. This thesis is dedicated

to them.

Abstract

Resource allocation is a fundamental problem in the field of multiagent systems, where

a set of resources need to be allocated to a group of agents in a way so as to optimizing

social welfare. In the last few years this problem has received much attention, especially

due to its wide applicability domain (see the survey of Chevaleyre et al. [CDE+06]).

This thesis studies the approximability and inapproximability of several important op-

timization problems addressed in the area of multiagent resource allocation, focusing

on two central representations of preferences, the bundle form and the k-additive form,

and on various types of social welfare, ranging from quantitative measures (utilitarian,

egalitarian and Nash product social welfare) to qualitative measures (envy-freeness).

First of all, we study the social welfare maximization problems, where we consider

utilitarian and egalitarian social welfare and social welfare by the Nash product (for both

total and average versions). We obtain several approximability and inapproximability

results. For the utilitarian social welfare maximization with 2-additive utilities, we

show that unless P = NP, it is impossible to achieve an approximation factor better

than 21/22. In addition, we prove that both egalitarian and Nash product social welfare

maximization are NP-hard to approximate to within any factor, each for both the

bundle form and the 3-additive form. For utility functions represented as additive

form, we establish a hardness factor of (8/9) + ε for total Nash product social welfare

maximization and another hardness factor of (2
√
2/3) + ε for the average version. Our

positive results have all been achieved regarding the additive form. We provide a fast

greedy approximation algorithm to within a factor of (1/m−n+1) for average Nash social

welfare maximization, where n and m are the number of agents and the number of

resources, respectively. We also prove that this problem admits a PTAS for the case

of identical agents. Particularly, we obtain an FPTAS for maximization problems with

respect to egalitarian and Nash product social welfare when the number of agents is

not the part of input. Finally, we consider a special case when n = m and present a

polynomial-time algorithm that produces optimal solutions for both total and average

Nash social welfare problems.

ix

Abstract

We then consider the problem of fairly distributing a number of indivisible goods among

agents with additive utility functions, focusing on envy-freeness and its weaker notions.

Instead of concentrating on envy-free allocations (which might not always exist), we seek

to find an allocation with minimum envy. Based on a notion introduced by Chevaleyre

et al. [CEEM07], we define several problems of minimizing the degree of envy and study

their approximability.

We next concern the question of whether there exist truthful mechanisms for the prob-

lem of maximizing (total and average) Nash product social welfare and the problem

of minimizing the degree of envy. We show that this is impossible for both exact and

approximation mechanisms.

Finally we introduce a model of using the positional scoring rules for allocating indivis-

ible resources, where agents express their preferences only by ranking single resources

from the most preferred to the least preferred. We then define several problems, either

in their decision or optimization version, and study them from a computational point

of view.

x

Zusammenfassung

Das Aufteilen von Gütern ist ein fundamentales Problem im Bereich der Multiagenten-

Systeme, bei dem eine Menge von Gütern unter einer Gruppe von Agenten aufgeteilt

werden soll, sodass die soziale Wohlfahrt dabei optimiert wird. In den letzten Jahren

wurde diesem Problem viel Aufmerksamkeit gewidmet, gerade weil es viele Anwendun-

gen hat (siehe die Übersicht von Chevaleyre et al. [CDE+06])). Diese Arbeit behandelt

die Approximierbarkeit und die Unapproximierbarkeit von verschiedenen, wichtigen Op-

timierungsproblemen im Bereich der Güteraufteilung mit mehreren Agenten, wobei der

Fokus auf zwei zentralen Formen liegt, die Präferenzen der Agenten zu repräsentieren:

die Bündel-Form und die k-additive Form. Weiterhin werden verschiedene Formen der

sozialen Wohlfahrt untersucht, diese reichen von quantitativen Maßen (utilitarische, ega-

litarische und Nash-Produkt soziale Wohlfahrt) bis hin zu qualitativen Maßen (Neid-

freiheit).

Am Anfang widmen wir uns Probleme, die die soziale Wohlfahrt maximieren, dabei

behandeln wir utilitarische und egalitarische soziale Wohlfahrt und soziale Wohlfahrt

in Hinblick auf das Nash-Produkt (für die totale und die durchschnittliche Version).

Wir erhalten verschiedene Approximierbarkeits- und Unapproximierbarkeits-Resultate.

Für utilitarische soziale Wohlfahrt mit 2-additiven Nützlichkeitsfunktionen zeigen wir,

dass es unmöglich ist einen Approximationsfaktor besser als 21/22 zu erhalten, solange

nicht P = NP gilt. Weiterhin zeigen wir, dass die egalitarische soziale Wohlfahrt und

die soziale Wohlfahrt in Hinblick auf das Nash-Produkt für jeden Faktor NP-hart zu

approximieren sind. Beides gilt sowohl für die Bündel-Form als auch für die 3-additive

Form. Sind die Nützlichkeitsfunktionen additiv gegeben, erhalten wir einen Härtefaktor

von (8/9) + ε für die Optimierung der totalen sozialen Wohlfahrt in Hinblick auf das

Nash-Produkt und einen weiteren Härtefaktor von (2
√
2/3) + ε für die durchschnittliche

Version. Alle unseren positiven Ergebnisse werden für die additive Form erreicht. Wir

geben einen schnellen Greedy-Algorithmus an, der ein Ergebnis innerhalb eines Faktors

von 1/(m−n+1) für die Optimierung der durchschnittlichen sozialen Wohlfahrt in Hinblick

auf das Nash-Produkt liefert. Dabei ist n die Anzahl der Agenten und m die Anzahl

der Güter. Ausserdem beweisen wir, dass es für den Fall von identischen Agenten ein

xi

Zusammenfassung

PTAS gibt. Genau genommen erhalten wir ein FPTAS für die Optimierung der egalita-

rischen sozialen Wohlfahrt und derer mit Hinblick auf das Nash-Produkt, falls die Anzal

der Agenten nicht Teil der Eingabe ist. Am Ende betrachten wir den Spezialfall, dass

n = m gilt und wir geben einen Polynomialzeit-Algorithmus an, der die Optimallösung

sowohl für das totale als auch für das durchschnittliche Problem die soziale Wohlfahrt

in Hinblick auf das Nash-Produkt zu optimieren liefert.

Dann betrachten wir das Problem, eine Menge von unteilbaren Gütern zwischen Agen-

ten mit additiven Mützlichkeitsfunktionen aufzuteilen, wobei auf Neidfreiheit und ih-

re schwächeren Bedeutungen geachtet wird. Anstatt uns auf neidfreie Aufteilungen zu

konzentrieren (die nicht immer existieren), versuchen wir Aufteilungen zu finden, bei

denen der Neid minimiert wird. Basierend auf Begriffen, die Chevaylere u.a. [CEEM07]

eingeführt haben, definieren wir verschiedene Probleme um den Grad des Neides zu

minimieren und betrachten deren Approximierbarkeit.

Dann widmen mir uns der Frage, ob es einen wahrhaftigen Mechanismus gibt, um die

(totale und durchschnittliche) soziale Wohlfahrt in Hinblick auf das Nash-Product zu

maximieren, sowie dem Problem den Grad des Neides zu minimieren. Wir beweisen,

dass dies sowohl für exakte als auch für approximative Mechanismen unmöglich ist.

Zum Schluss führen wir ein Modell ein, dass es uns erlaubt, positionelle Punktregeln

zum Aufteilen von unteilbaren Gütern zu nutzen, wobei die Agenten ihre Präferenzen

nur dadurch zum Ausdruck bringen, dass sie die einzelnen Güter nach ihrer Wertigkeit

anordnen, von wertvoll bis wertlos. Wir definieren dann verschiedene Probleme, entweder

in der Entscheidungsversion oder in der Optimierungsversion, und betrachten sie aus

der Sicht der Berechenbarkeit.

xii

Contents

Frontmatter i

Abstract . ix

List of Figures . xv

List of Tables . xvii

List of Algorithms . xix

1 Introduction 1

2 Preliminaries 5

2.1 Multiagent Resource Allocation . 5

2.2 Computational Complexity . 13

2.3 Approximation Algorithms . 20

3 Social Welfare Maximization Problems 27

3.1 The Framework and Basic Definitions 27

3.1.1 Representations of Utility Functions 28

3.1.2 Measures of Social Welfare . 30

3.1.3 Problem Definitions . 31

3.2 State of the Art . 33

3.2.1 The Bundle Form . 33

3.2.2 The Additive Form . 35

3.3 Our Results . 37

3.3.1 Inapproximability Results . 38

3.3.2 Approximability Results . 44

3.4 Conclusion and Future Work . 60

4 Computing Minimum Envy Allocation 63

4.1 Degree of Envy . 65

4.2 Our Results . 67

4.2.1 Approximation Schemes . 67

4.2.2 Inapproximability Result . 72

4.2.3 A Restricted Case . 73

4.3 Conclusions and Future Work . 75

xiii

Contents

5 Truthful Mechanism Design 77

5.1 Framework and Basic Definitions . 77
5.2 Our Results . 79
5.3 Conclusion and Future Work . 81

6 Positional Scoring Rules for Multiagent Resource Allocation 83

6.1 Positional Scoring Allocation Rules . 84
6.2 Problem Modeling . 87
6.3 Our Results . 87

6.3.1 Complexity of Winner Determination 88
6.3.2 Approximation . 94

6.4 Conclusion and Future Work . 97

Bibliography 99

xiv

List of Figures

2.1 The relationship between NP, NP-complete, NP-hard and P, assuming
P 6= NP. 16

2.2 A classification of optimization problems in NPO according to their ap-
proximability. 22

4.1 An example for solving Minimum Envy (max,max) exactly when m = n. 75

xv

List of Tables

2.1 Utilities of the agents for Example 2.1. 9
2.2 Some typical upper bounds on the time complexity 14
2.3 Exact exponential algorithm for some NP-hard problems 19

3.1 Utilities of the agents for Example 3.1 30
3.2 Utilities of the agents for Example 3.2. 31
3.3 Summary of known (in)approximability results for the social welfare op-

timization problems for the bundle form, using the model of value oracle. 35
3.4 Summary of known approximability results for the problem of maximizing

egalitarian social welfare for the additive form. 36
3.5 New results for social welfare optimization problems with respect to the

bundle form and the k-additive form. 62

4.1 Utilities of the agents for Example 4.1. 64
4.2 Utilities of the agents for Example 4.2. 66

6.1 Optimal allocations for the instance given in Example 6.2. 86
6.2 Optimal allocations for the problem with two agents, lexicographic scor-

ing vector and min (leximin) aggregate function. 91
6.3 The ranking of agents over the single goods for the instance given in

Example 6.4. 93
6.4 Overview of complexity results with respect to positional scoring rules. . 98
6.5 Overview of approximability results with respect to positional scoring rules. 98

xvii

List of Algorithms

1 A greedy algorithm giving a PTAS for Max-TNSW 45
2 A pseudo-polynomial time algorithm for Max-ESW 52
3 An FPTAS for Max-ESW . 53
4 An approximation algorithm for Max-TNSW and Max-ANSW. 59

5 A pseudo-polynomial time algorithm for Minimum Envy (opt1, opt2) . 68
6 An FPTAS for Minimum Envy (opt1, opt2) 68

xix

Chapter 1

Introduction

Resource allocation, which deals with distributing a number of resources (financial,

foods, energy, etc.) amongst a group of agents, is a central task in the field of multi-

agent systems (MAS). Much work so far in the area of MAS has been either directed

towards providing mechanisms for resource allocation (e.g, combinatorial auctions), or

preprocessed by a resource allocation mechanism (e.g, collaborative problem solving).

Moreover, a lot of important application areas concerned in the MAS research commu-

nity are also relevant to multiagent resource allocation (e.g, electronic commerce).

A typical example of resource allocation is a (combinatorial) auction where a number

of (discrete) items are auctioned concurrently among potential bidders (agents). Each

bidder can place bids on (combinations of) items. The usual goal of an auctioneer is

to provide a mechanism for finding an allocation that maximizes the revenue from the

sale of items. Auction theory has been widely studied in economics of the last forty

years. Nowadays, its applications can be found in various areas of real life, such as

spectrum license (MacMillan [Mac94]), allocation of airport take-off and landing time

slots (Rassenti et al. [RSB82]), sales of online seats (Eso [Eso01]), electricity markets

(Ausubel and Cramton [AC04]), and trading (Abrache et al. [ACG05]).

As another example, we consider the following situation. A country X receives one

million dollars in donation for the purpose of developing three main areas: healthcare,

education and housing. Generally, the distribution of this funds among these three

areas can be considered on the three levels of decision making. At the first level, one

can consider how to allocate the spending to three areas. Should the funding be divided

equally among those or should one program get all the money? At the second level,

assume that each program gets a portion of the one million dollars, the next decision in

the education area is how to best allocate the funds among various education interests.

Should most of the funds be dedicated to building schools or to buying educational

1

Chapter 1 Introduction

equipment? Or, should one spend a part of the funds to grant scholarships to pupils

who would not normally be able to attend the school? The last level of decision making

involves allocating the financial resources among individuals. Depending on the policies

of the country, the decisions at this level may include: who will get the next scholarship

when there are many pupils in the list? How should one distribute the scholarships in

a way that ensures fairness?

The main issue addressed in multiagent resource allocation is to model mathematically

the problems of allocating resources (either as decision or as optimization problems) and

then looking for the methods for solving them efficiently. For the last decade much of

the effort has been devoted to study the computational complexity of various decision

problems arising in the context of multiagent resource allocation. Many of the problems

have been shown to be NP-hard in general and it seems unlikely that one can develop

exact algorithms that can produces optimal solutions in polynomial time. Therefore, it

is of great interest to know whether one can design an “approximation algorithm” - an

efficient algorithm that is guaranteed to produce a good approximation to the optimum

solution.

The dissertation obtains both approximation algorithms and lower bound results for

approximating social welfare optimization problems in multiagent resource allocation.

Here, we present a brief summary of the main contributions of this dissertation.

1. We provide the first lower bounds on the approximability of several optimization

problems where the languages used to represent the preferences of agents over

the alternative bundles of resources are the bundle form and the k-additive form.

These problems include: Maximum Utilitarian Social Welfare, Maximum

Egalitarian Social Welfare, Maximum Total Nash Social Welfare,

and Maximum Average Nash Social Welfare. To the best of our knowledge,

no hardness results for these problems have been known so far, except the case

of maximizing utilitarian social welfare with the bundle form, which was given

by Lehmann et al. [LOS99, LOS02], and another case of maximizing egalitarian

social welfare with the additive form, which was obtained by Bezáková and Dani

[BD05].

2. We give the upper bounds for approximating Maximum Egalitarian Social

Welfare, Maximum Total Nash Social Welfare, andMaximum Average

Nash Social Welfare with respect to the additive form. Namely, we propose

a first approximation algorithm for the two latter problems. In particular, we

introduce a deterministic algorithm based on dynamic programming, which can

2

be used to construct fully polynomial-time approximation schemes for every social

welfare maximization problems, when the number of agents is fixed.

3. We consider a variant of the social welfare maximization problem where the num-

ber of agents and the number of resources are the same, and provide an efficient

polynomial-time exact algorithm for solving it.

4. We introduce several variants of the problem of finding envy-free allocations ob-

tained by relaxing envy-freeness by the notion of degree of envy, and then present

some approximability results for them.

5. We introduce a method of using the positional scoring rules for allocating indivis-

ible resources, and we model and study several problems in this context from the

computational point of view.

This dissertation is organized as follows. Chapter 2 provides the fundamentals of the

field of multiagent resource allocation and a short introduction to the computational

complexity theory. In particular, we introduce the basic methods for designing approxi-

mation algorithms and the main techniques for proving the hardness of approximation.

In Chapter 3, the first section is devoted to give the basic notions of social welfare as well

as of two types of representation of utility functions, the bundle form and the k-additive

form. We will give a brief overview of known results in Section 3.2. In Sections 3.3,

we provide lower bounds and upper bounds on the approximability of the social welfare

maximization problems. This chapter concludes with a summary of the obtained results

and a list of open questions in Section 3.4.

Next, in Chapter 4 we concentrate on relaxing the notion of envy-freeness and study

the problem of finding allocations that minimize the envy.

Chapter 5 deals with the inapproximabity results for truthful mechanisms for the prob-

lem of maximizing Nash product social welfare and the problem of minimizing the

envy.

Finally, in Chapter 6 we consider the problem of allocating indivisible resources using

positional scoring rules. Section 6.1 will be devoted to present the basic notions of

positional scoring rules that was originally studied in voting theory. The formal problem

definitions are given in Section 6.2. Section 6.3 presents the main results related to

computational complexity and approximation algorithms. This chapter concludes with

a summary and a discussion for future work in Section 6.4.

3

Chapter 1 Introduction

4

Chapter 2

Preliminaries

In this chapter we will introduce briefly the basics of the field of multiagent resource

allocation which will be discussed in this thesis. Furthermore, we also review relevant

background knowledge of computational complexity theory and approximation algo-

rithm theory.

2.1 Multiagent Resource Allocation

Multiagent resource allocation (MARA) is a central topic in both computer science

(artificial intelligence) and economics (social choice theory), that deals with providing

mechanism to allocate a number of resources amongst two or more agents. While eco-

nomics concerns the quality of allocations, the computational aspect is the main issue

studied in computer science. Therefore, the field of MARA has interdisciplinary charac-

teristics and relates to a wide range of applications, such as auction, scheduling, network

routing, airport traffic management, allocation of mineral riches in the ocean bed, the

fair and efficient exploitation of earth observation satellites, greenhouse gas emissions

reduction, divorces, etc. One may ask, what exactly is MARA? The following definition

of MARA introduced in [CDE+06] is tentative and perhaps not as precise as should be

desired.

“Multiagent Resource Allocation is the process of distributing

a number of items amongst a number of agents.”

In what follows, we will give a short overview of important parameters involved in a

MARA system as well as main research topics. For further details, we refer to the survey

paper of Chevaleyre et al. [CDE+06] and the references therein.

5

Chapter 2 Preliminaries

Agents

An agent is an autonomous decision maker that may have different preferences over the

alternatives (allocations). For example, an agent can be a person or a machine. The

term multiagent system is used to refer to a group of agents, which interact or work

together in order to perform some tasks or achieve some goals.

Resources

In the context of MARA, resources (sometimes called goods, objects or items) can be

food, land, oil, energy or anything else which can be considered valuable. For the purpose

of study, we can categorize resources according to their properties and characteristics.

For example, we can distinguish between divisible and indivisible resources. Generally,

divisible resources are things that can be divided into smaller parts without lost of value,

such as a cake, while an indivisible resource, such as a car, can only be assigned to a single

agent in its entirety. We also discriminate between continuous and discrete resources. A

continuous resource (e.g, fuel, liquid, energy) could be divided into small parts, each can

be seen as an indivisible (and thus discrete) resource, before being allocated to agents.

Alternatively, resources can be treated as static or not. Non-static resources are either

consumable (e.g, fuel) or perishable (e.g, food), whereas static resources do not change

their properties during the process of allocating. Another distinction is between sharable

and non-sharable resources. An example of sharable resources are internet servers that

can be allocated to more agents at once. Finally, we can distinguish between single-unit

and multi-unit (where multiple copies of many different items are available, e.g, a dozen

bottles of beer).

The survey of Chevaleyre et al. [CDE+06] provides a distinction between the types of

resources in more detail. In this thesis, we only consider the scenarios where resources

are static, single-unit, indivisible and that cannot be shared. We also use the terms

good, object and item synonymously instead of resource.

Allocation

In general, an allocation is a particular assignment of resources among agents. An

allocation is said to be complete if every resources are assigned completely to agents,

otherwise it is called an incomplete allocation. If an allocation is not specifically referred

to as being incomplete, then it is understood to be complete.

6

2.1 Multiagent Resource Allocation

Preferences

An important parameter of a MARA is the preference representation of agents over

resources. Depending on the information provided by agents, in part or complete,

precise or vague, the preferences can be modeled in two main ways: cardinal preference

and ordinal preference.

Cardinal Preference

Much of study in economics, especially in decision making, or in social choice theory (e.g,

voting), relies on the idea that agents’ preferences can be expressed in certain numeric

manner. In a bit formal, each agent is equipped with a so-called utility function, which

is a mapping from a set of subsets of resources to a numerical set F (such as the set N of

nonnegative integers, the set Z of integers, the set Q of rational numbers, and the set Q+

of nonnegative rational numbers). Utility functions allow agents to evaluate precisely

the utility of the bundles of resources they received. The idea behind utility functions

mapping bundles of resources rather than single resources to values in F is that agents

might be willing to pay either more or less for a bundle than the sum of their utilities

for this bundle’s single items. For example, owning a pair of matching shoes is likely to

be more valuable to an agent than the sum of the values each single shoe has for this

agent. On the other hand, an agent who is willing to bid on 100 identical items might

expect some discount and so has less utility for the bundle of 100 items than 100 times

the utility assigned to a single item.

There are several choices for representing utility functions in the way of cardinal pref-

erence, each of them has advantages and disadvantages under different scenarios.

Bundle form: In this form, agents enumerate all possible bundles of resources to which

they assign a non-zero value. This is perhaps the most intuitive representation of utility

functions, but its drawback is that it takes exponential time in the number of resources

in the worst case for the description. For instance, given a set of only 10 single resources,

it may require 210 real numbers to present each possible agent’s preference.

k-additive form: This form of representation is inspired from the notion of k-additive

functions that was first used in fuzzy measure theory [Gra97] and was then introduced

in the context of combinatorial auction by Conitzer et al. [CSS05]. For a fixed positive

integer k, a utility function is said to be k-additive if the utility of every bundle of

resources B is represented as the sum of utilities assigned to subsets of B with cardinality

7

Chapter 2 Preliminaries

less than or equal to k. A formal definition of the k-additive form will be provided in

Section 3.1.

Straight-line program: Informally, a straight-line program is a topologically sorted list

of gates of a boolean circuit C that takes as input an m-dimensional binary vector

and outputs s bits. Interpreting the input vector as a bundle of resources B and the

output as the binary representation of u(B), we can say that C (or a corresponding

straight-line program) represents utility function u. The formal definition of this kind

of representation can be found in [DWL05].

Bidding language: The bidding language has been developed to encode bids more suc-

cinctly in combinatorial auction. Typically, it is represented as a set of atomic bids,

each of the form (B, p) in which p is maximum price that a bidder is willing to pay for

the bundle B. Two main bidding languages are the OR and XOR languages. The OR

language is defined as follow: given a bid of the form (B1, p1)OR . . .OR(Bk, pk), the

value of the bundle B is determined by:

max
I

∑

i∈I
pi

where I ⊆ {1, . . . k} such that for all i 6= j ∈ I, Bi ∩Bj = ∅.

One can show that the OR language is not fully expressive since it cannot represent the

bids that are subadditive.

The XOR language is more expressive than the OR language: given a bid of the form

(B1, p1)XOR . . .XOR(Bk, pk), the value of the bundle B is defined to be

max
i,Bi⊆B

pi

It is easy to see that the XOR language can be used to represent any utility function

but it is less compact than the OR language in some cases. For example, any additive

function on m items can be represented by OR bids of size m while the use of XOR

requires 2m bids. For a detailed discussion of the bidding languages OR, XOR as well

as the combination of these two languages, OR-of-XOR and XOR-of-OR, we refer to

the bookchapter of Nisan [CSS06].

8

2.1 Multiagent Resource Allocation

Ordinal preference

For this type of representation, agents express their preferences over bundles of resources

via binary relations, denoted by �, which are reflexive and transitive but not necessarily

complete (see Example 2.1). For example, the relation A � B expresses that agent

prefers the bundle A at least as much as the bundle B. If A � B and B � C then

A � C.

Example 2.1 Consider an example with two agents {a1, a2} and three resources

{a, b, c} and the agents’ preferences are given in Table 2.1. The preference of agent

a1 is complete, but the preference of agent a2 is not.

Table 2.1: Utilities of the agents for Example 2.1.

Agents Preferences

a1 {a, b, c} � {a, b} � {a, c} � {a} � {b, c} � {b} � {c}
a2 {a} � {b} � {c}

Unlike the cardinal preference, ordinal representations of preferences emphasize the

order of positions of the alternatives (bundles of resources). In many situations, it

would be difficult to have preferences of agents accurately: someone can say that she

prefers coke to sprite but if we ask her to map her ranking to some cardinal scale, she

would be confused. In such situations, obtaining an ordinal preference seems to be much

more easier than a cardinal one.

In fact, any cardinal preference induces an ordinal preference but the reverse is not

true. Indeed, if we know the cardinal preference of an agent represented by a function

u : 2R → F, then her ordinal preference over 2R is determined by the relation � as

follows: for any two bundle of resources A,B ⊆ 2R: A � B if and only if u(A) ≥ u(B).

Conversely, if we know the ranking of agents over the bundles of resources, it is not clear

that whether we know the cardinal intervals between the two bundles A and B. This

situation is the same as in an athletic competition where if we only know the athletes

placing first, second, third and so on, we cannot say that the winner beat the second

one by precisely as much time as the second athlete beat the third one.

9

Chapter 2 Preliminaries

Social Welfare

Social welfare is one of the most important parameters in a MARA. This notion is

inspired from the works in welfare economics and social choice theory. Intuitively, by

means of social welfare, it shows how individual preferences can be aggregated into

desirable social or collective decisions. For example, assume that agents express their

preferences by using utility functions, every given allocation of resources to agents in-

duces a vector of utilities (collective utility) that can be aggregated to a single value,

the social welfare of this allocation. There are different concepts of social welfare, re-

lying on both quantitative measure, including utilitarianism, egalitarianism, elitistism,

k-rank dictator, leximin ordering, Nash product, and qualitative measure such as Pareto

efficiency, envy-freeness, proportional.

utilitarianism: utilitarian social welfare sums up the agents’ individual utilities in a

given allocation, thus providing a useful measure of the overall—and also of the

average—benefit for society. For instance, in a combinatorial auction the auction-

eer’s aim is to maximize the auction’s revenue (i.e., the sum of the prizes paid for

the items auctioned), no matter which agent can realize which utility.

egalitarianism: egalitarian social welfare (also known as Rawlsian measure) gives the

utility of the agent who is worst off in a given allocation, which provides a useful

measure of fairness in cases where the minimum needs of all agents are to be

satisfied. For example, think of distributing humanitarian aid items (such as food,

medical aid, blankets, tents, etc.) among the needy population in a disaster area

(e.g., an area hit by an earthquake or a tsunami). Guaranteeing every survivor’s

continuing survival is the primary goal in such a scenario, and it is best captured

by the notion of egalitarian social welfare.

elitistism: The elitist social welfare coincides with the maximal individual utility in the

system and thus in some sense it is not a fair measure of social welfare. However,

it may be used in several distributed computing applications where the system de-

signer only concerns one of agents who can achieve the utility as much as possible.

k-rank dictator: This measure is defined as the utility of the k-th happiest agent in

an allocation. One can see that the egalitarian social welfare is exactly the 1-rank

dictator while the elitist social welfare is corresponding to the n-rank dictator,

where n is denoted by the number of agents. Thus, both egalitarianism and

elitistism are specific cases of the k-rank dictator. A special case when k = ⌈n/2⌉

is called the median-rank dictator.

10

2.1 Multiagent Resource Allocation

leximin ordering: This is a refinement of egalitarianism (and thus elitistism and k-

rank dictator) that, informally, works by comparing first the utilities of the least

satisfied agents, and when these coincide, compares the utilities of the next least

satisfied agents, and so on. Stated differently, the leximin ordering is a lexico-

graphical ordering over the ordered utility vectors (an ordered utility vector is a

vector in which its coordinates are arranged in an increasing order) derived from

the allocations. As well as the egalitarian social welfare, it favors fair division of

resources.

Nash product: The Nash product social welfare, which is inspired from the work of

John Nash [Joh50], is the product of individual agent utilities. It can be seen as a

compromise between utilitarian and egalitarian social welfare. On the one hand,

it has the (strict) monotonicity property of utilitarian social welfare because an

increase in any agent’s utility leads to an increase of the Nash product (provided

all agents have positive utility). On the other hand, the Nash product increases

as well when reducing inequitableness among agents by redistributing utilities,

thereby providing a measure of fairness. Looking at the ordering that is induced

by the allocations, the “social welfare ordering,” Moulin [Mou04] presents further

beneficial properties of the Nash product. For example, the Nash product is

uniquely characterized by independence of individual scale of utilities,1 i.e., even

if different “currencies” are used to measure the agents’ utilities, the social welfare

ordering remains unaffected.

Pareto efficiency: An allocation is Pareto-efficient or Pareto-optimal if no agent can

improve her welfare without reducing other agents’ welfare. This idea goes back

to Vilfredo Pareto (Italian economist, 1848-1923), and generally is viewed as the

most fundamental criterion for efficiency.

envy-freeness: The envy-freeness is perhaps one of the most important notions of

fairness in the context of resource allocation. An allocation is said to be envy-

free if no agent wants to exchange his bundle of resources with that of any other

agent’s. Unfortunately, such an allocation might not exist in many cases because

of the requirement that all resources must be assigned completely to agents. For

example, consider an instance with two agents and only one resource. We can not

have an allocation that ensures envy-freeness. The reason is that the resource is

only assigned to one of the two agents and if so, the other agent would be envious.

1Similarly, utilitarian social welfare is characterized by independence of individual zeros of utilities: A
constant shift of an agent’s utility function does not change the social welfare ordering.

11

Chapter 2 Preliminaries

But if both agents get nothing (the empty bundle), the allocation is envy-free.

Instead of finding envy-free allocations, we may seek to compute allocations such

that the envy is as small as possible (see [LMMS04]).

proportional: An allocation is proportional if each agent thinks that she got at least

1/n-th of the resources (where n is the number of agents). It is known that if an

allocation is envy-free, then it must also be proportional, but the converse is not

true. An example of using this measure is the problem cake-cutting (see Brams

and Taylor [BT96]).

Allocation Procedure

A resource allocation procedure is a procedure for achieving a certain desirable outcome,

being either optimal or feasible. Typically, such a procedure could be centralised, where

a single entity plays the role deciding what should be the final allocation; or distributed,

where the final allocation is reached after a sequence of negotiation steps for which

agents agree on exchanging resources. Combinatorial auction is a typical example of

centralised approach in which the bidders place their bids on combinations of items and

the auctioneer, who plays the role as the central entity, will decide the result of the

auction. For the basic introduction as well as a survey of results so far in this area, we

refer to the textbooks of Peter Cramton, Yoav Shoham, and Richard Steinberg [CSS06]

and a bookchapter of Blumrosen and N. Nisan [BN07].

The most common approaches for the distributed allocation are negotiation protocols.

These protocols allow agents to negotiate in a group of two agents (bilateral) or between

any number of agents(multilateral), in order to agree on deals to exchange the resources.

There are several protocols that have been developed for negotiation over the resources

and perhaps, among those, the most popular one is Contract-Net protocol which is

introduced in [Smi80]. Other extensions of this protocol can be found in the papers of

Sandholm [San93], Golfarelli et al. [GMR97] and Sousa et al. [SRN03].

Both the centralised and distributed approaches for multiagent resource allocation have

their own advantages and disadvantages. Centralised procedures are known to be more

popular in practice since they do not require much communication between agents to

implement such procedures. Furthermore, one can design the powerful algorithms for

finding the desirable allocations. Nevertheless, the drawback of this approach is the limit

of computational resources. That means it is unlikely to implement when the number of

agents as well as the number of resources increases. Hence, one of the most important

12

2.2 Computational Complexity

issues is determining the complexity of computing an optimal allocation via centralised

protocols? In some situations, agents might not want to report their truth preferences

to the auctioneer, and thus a centralised protocol cannot be applied. The disadvantages

of the distributed approach lie on the quality of an allocation that it found. However,

it might be a good choice for the case where computing optimal allocations is hard. In

this thesis, we concentrate on the first type of allocation procedure.

Our Research Topics

The survey of Chevaleyre et al. [CDE+06] enumerates the main topics involved in the

area of multiagent resource allocation. Among those, we are interested in studying the

computational aspects of social welfare optimization problems. Since most of them are

NP-hard to solve, we are looking for the methods that can be used for solving these

problems, exactly or approximately, or deriving approximation hardness results.

2.2 Computational Complexity

Landau’s symbols

In complexity theory, Landau’s symbols are used to characterize how functions compare

asymptotically. In particular, it allows us to formulate the upper and lower bounds on

a function. Formally, given the functions: f, g : N → R+, we define:

• asymptotic upper bound:

f ∈ O(g) ⇔ ∃c > 0, ∃n0, ∀n ≥ n0 : f(n) ≤ c · g(n), (f asymptotically grows at

most as fast as g).

• asymptotic lower bound:

f ∈ Ω(g) ⇔ ∃c > 0, ∃n0, ∀n ≥ n0 : f(n) ≥ c · g(n), (f asymptotically grows at

least as fast as g).

• asymptotically tight bound:

f ∈ Θ(g) ⇔ f ∈ O(g) ∩ Ω(g), (f asymptotically grows just as fast as g).

13

Chapter 2 Preliminaries

Table 2.2: Some typical upper bounds on the time complexity

Name Running time

constant O(1)
logarithmic O(log n)
linear O(n)
quasilinear O(n log n)
polynomial O(nc), c > 1
exponential O(cn), c > 1
factorial O(n!)
super-exponential O(nn)

By using the symbols O and Ω, we can give upper and lower bounds, respectively, for the

asymptotic running time of an algorithm. For example, a linear search algorithm for the

problem of finding a biggest element in an unordered array of n numbers has a running

time of O(n). As another example, the lower bound on the best-case running time of

the insertion sort algorithm is Ω(n) (see [CLRS09]). Finally, the merge sort, a standard

algorithm for sorting an array of n arbitrary elements, has an upper bound ofO(n log(n))

and a lower bound of Ω(n log(n)) on the running time. Thus, the asymptotically exact

time complexity of this algorithm is Θ(n log(n)).

Complexity classes

Many computational problems are known to be tractable in the sense that they can be

solved in polynomial time (such as primality testing (Primes)). Unfortunately, many

other important problems are hard to solve, in the sense that no polynomial algorithms

are known for them (such as traveling salesman problem (TSP)). The field of compu-

tational complexity deals with classifying computational problems according to their

inherent difficulty, that is, the amount of computational resources needed to solve the

problems. There are two central types of computational resources: time and space, and

both depend on the size of input. Time complexity estimates the number of steps to

solve the problem, while space complexity measures the number of memory cells that

are needed to solve the problem. Landau’s symbols can be used to describe the upper

and lower bound of time and space complexities. Table 2.2 lists some typical upper

bounds on the time complexity.

14

2.2 Computational Complexity

In general, there are at least four categories that a computational problem could fall

into, including: decision problem, search problem, counting problem and optimization

problem. In this thesis, we focus on decision problems and optimization problems.

A decision problem is a problem whose answer is yes or no for every input. For example,

Primes is the decision problem of determining whether or not a given integer N is

prime. Another example is TSP which asks whether a graph has a Hamiltonian cycle

(i.e., a cycle which visits every vertex exactly once). Decision problems can be classified

into complexity classes according to their resource consumption (the resource is time or

space). The two best known complexity classes are P and NP. P (the abbreviation

P stands for polynomial time) is the class of all decision problems that can be solved

by a deterministic Turing machine in time polynomial in the length of its input. The

Turing machine is a simple abstract model of computation which is used in modern

computability and complexity theory. A comprehensive description of it can be found in

[GJ79]. To show that a problem is in P, one has to provide a polynomial-time algorithm

that runs on every input of the problem. For instance, Primes was shown to be in P by

using a so-called AKS primality test algorithm (a.k.a Agrawal-Kayal-Saxena primality

test, see [AKS02]). The class NP (the abbreviation NP refers to nondeterministic

polynomial time) consists of decision problems which are solvable by a nondeterministic

Turing machine in polynomial time. Equivalently, a decision problem A is in NP if

every yes-instance of A has a short certificate that is verifiable in polynomial time. For

example, TSP is in NP because given a path in the graph, one can verify easily if it

is a Hamiltonian cycle. The nondeterministic Turing machine can find such a cycle in

n steps, where n is the number of vertices of the graph, by guessing which vertex we

should visit to next at every step. However, we do not know if this can be done by

a deterministic Turing machine in polynomial time. In fact, it is easy to show that

P ⊆ NP but the converse is not known to hold. This is probably the most important

open question in computer science and mathematics. It is widely believed that P 6= NP

but nobody has been able to prove this.

By the assumption that P 6= NP, there are problems that are in NP but not in P.

One can classify decision problems within NP according to how hard they are. The

class P contains the “easiest” problems which can be solve in polynomial time while

NP-complete is the class of “hardest” problems in NP. By the ‘hardest” problems, we

mean that if we can prove that even one NP-complete problem is polynomially solvable,

then every NP-complete problems are polynomially solvable and thus it implies that

P = NP. To understand what exactly NP-complete problems are, we need to use a

so-called polynomial-time many-one reduction that is defined as follows.

15

Chapter 2 Preliminaries

Figure 2.1: The relationship between NP, NP-complete, NP-hard and P, assuming
P 6= NP.

P

NP

NP-hard

NP-complete

Definition 2.1 A decision problem A is polynomial-time many-one reducible to a deci-

sion problem B, denoted by A ≤p
m B, if and only if there is a polynomial-time function

f such that, for any instance I of problem A, the answer of problem A for this instance

is yes if and only if the answer of problem B for instance f(I) is yes.

Obviously, if A ≤p
m B and B is in P then A is in P too. Indeed, in order to solve an

instance I of A, we transform (in polynomial time) I into an instance f(I) of B and

then solve it. If the problem A has a property that any problem B ∈ NP is reducible

to A in polynomial time then A is called NP-hard. Intuitively, a problem is NP-hard

if it is at least as hard as any problem in NP. Note that a NP-hard problem might not

be in NP, for example, the Halting problem which determines whether a particular

program or an algorithm will terminate or run forever. If A is NP-hard and A ∈ NP

then A is NP-complete. The relationship between NP, NP-complete, NP-hard and

the class of problems whose optimal solution can be found in polynomial time, P, is

illustrated in Figure 2.2.

In computational practice, when we want to show that a given problem C is NP-hard,

we need only to take a problem B which is already known to be NP-hard and prove

that B can be polynomially reduced to C. Since the polynomial reduction is transitive,

any problem A ∈ NP can be also polynomially reduced to C and thus, C is NP-hard.

For example, we consider a simple allocation problem as follows. The Santa Claus has

m packs of candies, each has ai candies, and he wish to allocate them among n children

without opening the packs. The question is if there is an assignment such that the

least lucky child is as happy as possible. This problem is shown to be NP-hard, even

with only two children, by a reduction from a well-known NP-hard problem Partition

which asks, given a set of positive integer numbers S = {a1, . . . , am}, whether there

16

2.2 Computational Complexity

exists a subsets C ⊂ S such that the sum of the elements of C equals to the sum of the

elements of S \ C.

There are other complexity classes that now exist in computer science beyond the NP

such as DP,PNP,NPNP. Since we will not go further in using these classes in this

thesis, we do not define them here but refer to the textbooks [Pap95, Rot05].

Optimization problems

After introducing decision problems and the two important complexity classes, P and

NP, we now turn to optimization problems. We will introduce the classes PO andNPO

of optimization problems that are counterparts of the classes P and NP, respectively,

for decision problems. We start with a formal definition of an optimization problem.

Definition 2.2 An optimization problem Π is characterized by the four components

(I, SOL, val, OPT), where I is the set of instances of Π and for each instance x ∈ I,

• SOL(x) is the set of all feasible solutions to x,

• For each solution s ∈ SOL(x), val(s) denotes the (positive) value of s,

• OPT (x) is the optimal value of the instance x;

There are two major types of optimization problems:

• maximization problem where OPT (x) = maxs∈SOL(x){val(s)}, and

• minimization problem where OPT (x) = mins∈SOL(x){val(s)}

Let us take two examples of optimization problem as follows.

Maximum-2-Satisfiability (Max-2-Sat)

Instance: A boolean formula ϕ in conjunctive normal form consisting of clauses having

two literals each.

Solution: A truth assignment to the variables of ϕ.

val: The number of satisfied clauses by a truth assignment.

OPT : The maximal possible number of simultaneously satisfiable clauses of ϕ.

Minimum Traveling Salesman Problem (TSP)

Instance: A complete undirected graph G that has a nonnegative integer weight associ-

ated with each edge.

17

Chapter 2 Preliminaries

Solution: A Hamiltonian cycle.

val: The weight of a Hamiltonian cycle.

OPT : The minimal possible weight of a Hamiltonian cycle.

In fact, any optimization problem Π = (I, SOL, val, OPT) has an associated decision

problem Π′ which asks, for some nonnegative number k, whether or not there exists

a solution s of instance x ∈ I such that val(s) ≥ k if Π is a maximization problem,

or val(s) ≤ k, if Π is a minimization problem. For example, the decision version of

the maximization problem Max-2-Sat above can be stated as follows: given a boolean

formula ϕ in conjunctive normal form consisting of clauses having two literals each and

a positive integer number k, the question is if there exists a truth assignment to the

variables of ϕ such that the number of satisfied clauses is greater than or equal to k.

Clearly, Π′ is not harder than Π. In the other words, if an optimization problem can be

solved in polynomial time, then its corresponding decision version can be polynomially

solved.

In what follows, we focus on optimization problems whose decision versions are in NP.

The formal definition is as below.

Definition 2.3 An optimization problem Π = (I, SOL, val, OPT) is in NPO if the

following conditions are satisfied:

• there exists a polynomial p such that for all x ∈ I, s ∈ SOL(x): |s| ≤ p(|x|),

• checking whether s ∈ SOL(x) is in P,

• computing val(s) is in polynomial time.

An NP-hard optimization problem is an NPO problem whose decision version is NP-

complete. Max-2-Sat and TSP are well-known examples of NP-hard problem. An

important subclass of NPO, denoted by PO, contains the NPO problems that are

solvable in polynomial time.

Definition 2.4 PO is the class of optimization problems Π such that:

• Π ∈ NPO,

• there is a polynomial-time algorithm that, for every instance x of Π, computes an

optimal solution for x.

18

2.2 Computational Complexity

In the literature, there are several approaches for dealing with NP-hard problems such

as exact algorithms, heuristics, approximation algorithms and randomized algorithms.

Each of these methods has its own advantages and could be efficiently applied for many

NP-hard problems. Here we make a short overview of these approaches. More details

can be found in the textbook of Hromkovič [Hro01].

Exact algorithms: The naive approach for solving optimization problems exactly is

a brute-force search (a.k.a exhaustive search). Given an instance of an optimization

problem, a brute-force algorithm will find all feasible solutions and check which one

is optimal for that instance. This type of algorithm, of course, is easy to implement

but the price to pay for this is the growing very quickly of the running time when

the size of instance increases. A natural question is whether there is an algorithm

significantly faster than brute-force one. In the detail, if the best exponential running

time we can hope for exact algorithms is O(αn) for some α > 1, then what is the best

possible smallest value of α? Table 2.3 illustrates the improvement of exact exponential

algorithms for some typicalNP-hard problems. For more detail on the exact algorithms,

we refer to the textbook of Fomin and Kratsch [FK10], the surveys of Woeginger [Woe01]

and of Schöning [Sch05].

Table 2.3: Exact exponential algorithm for some NP-hard problems

Problem Time Reference Time Reference

3-Sat O(1.6181n) [MS85] O(1.465n) [Sch08]
Independent Set O(1.2599n) [TT77] O(1.1893n) [Rob01]
3-Coloring O(1.4422n) [Law76] O(1.3289n) [BE05]
3-Domatic Number O(2.8805n) [BH06] O(2.695n) [RRSY07]

Heuristics: The heuristic method was first used in the early 1940s by Polya [Pol48] and

has been studied extensively in the literature. Unlike exact algorithms, the heuristic

methods do not aim at computing optimal solutions, but return near-optimal ones.

Usually, these solutions can be computed fast and easily but there no guarantee for their

quality. For example, we consider the greedy-type heuristics for the problem TSP2. The

greedy rule is that whenever we are at the vertex i, we will choose the next vertex j that

is not chosen yet and has the smallest distance to i. An overview of heuristics method

can be found in [RP85] and [Sil04].

2Note that the best known exact algorithm so far for TSP has running time of O(n22n), based on the
dynamic programming.

19

Chapter 2 Preliminaries

Approximation algorithms: Basically, approximation algorithms are heuristic methods

which produce approximation solutions with a bound on the quality of them. In the

other words, if we can give a bound on the solution returned by a heuristic method,

then we obtain an approximation algorithm. In practice, however, this is not always

done. For example, it is known that TSP cannot be polynomially approximated to

any factor, unless P = NP, although there exist heuristic algorithms for it. Since the

approximation algorithm is one of the main concepts in this thesis, we devote the section

2.3 to present formal definitions and important properties.

Randomized algorithms: A randomized algorithm is an algorithm whose steps are not

deterministic. While the deterministic algorithms look at the input to decide what to

do next, the randomized algorithms flip coins for every nondeterministic choice. Ran-

domized algorithms are used in many cases where one cannot find an exact solution in

a deterministic way in a reasonable time. They may be faster and easier to describe

than deterministic algorithms. Moreover, in many situations, one can obtain a deter-

ministic algorithm for a problem by converting a known randomized algorithm using

standard derandomization techniques. For more details on randomized algorithms, we

recommend to read the textbooks [MR95], [MU05] and [Hro05].

2.3 Approximation Algorithms

As mentioned earlier, many optimization problems of theoretical and practical interests

are intractable, meaning the exact solutions for these problems is unlikely to determine in

polynomial time in size of problem input. Improving exact algorithms might be a good

choice, but it remains difficult in practice to solve the problem instances whose input

size are large. Another potential approach is the use of heuristic methods. Although the

experiments show that the heuristics often find good solutions within polynomial time,

but in general, there is no proof for the quality of solutions they found. This weakness

could be overcome by using approximation algorithms, which always derive a bound on

the quality of the solutions they generate. In the other words, it allows us to see that

how well the heuristics can be performed on all instances. The field of approximation

algorithms has been studied intensively in theoretical computer science in the last few

decades and is considered as one of the promising approaches to tackle hard problems.

This section is devoted to give an overview of this field. We start with a formal definition

of approximation algorithms for maximization and minimization problems.

20

2.3 Approximation Algorithms

Definition 2.5 Let Π be a maximization problem (minimization problem) and a func-

tion α : N → R+ with α < 1 (α > 1). An α-approximation algorithm A for Π is

an algorithm such that for each instance x of Π, A runs in polynomial time in |x| and

produces a feasible solution A(x) for x such that

val(A(x)) ≥ α(|x|) ·OPT (x), (val(A(x)) ≤ α(|x|) ·OPT (x)).

We call α the approximation factor of the algorithm A. Note that in literature α is also

called with other names such as approximation ratio, performance ratio, guarantee ratio

or factor. The factor α depends on the size of instance, such as logn (e.g., Minimum

Set Cover [Joh74], etc.) or nc for some c > 0 (e.g, Max Clique [BH92]). In other

cases, the factor α might be a constant function such as 1−ε for some ε > 0 (e.g, Max-

k-Sat [Joh74]), and for these cases we say A is a constant approximation algorithm.

We will denote by APX the class of problems which admit a constant approximation

algorithm.

In fact, there exist problems that are extremely well approximated in the sense that, one

can obtain an approximation algorithm within factors arbitrarily close to 1 for them.

We call such algorithms as approximation schemes.

Definition 2.6 A maximization problem (minimization problem) Π is said to have a

polynomial-time approximation scheme (PTAS) if there exists an algorithm A such

that for each ε, 0 < ε < 1, A is (1− ε)-approximation algorithm ((1+ ε)-approximation

algorithm) for Π.

Definition 2.7 A maximization problem (minimization problem) Π has a fully

polynomial-time approximation scheme (FPTAS) if for each ε, 0 < ε < 1, there exists

a (1 − ε)-approximation algorithm ((1 + ε)-approximation algorithm) Aε for Π, where

the running time is polynomial in 1/ε as well.

The crucial difference between PTAS and FPTAS is the requirement of the running

time bound on 1/ε. For instance, if for each input of size n the algorithm Aε runs in time

O(n1/ε) then we have a PTAS, not an FPTAS. On the other hand, if the running time

is O(n10ε−100) then we have an FPTAS. Assuming P 6= NP, an FPTAS (a PTAS) is

the best result we can obtain for a NP-hard problem (a strongly NP-hard problem3).

3An NPO problem is strongly NP-hard if it is NP-hard even if the input instance is specified in unary
representation.

21

Chapter 2 Preliminaries

Figure 2.2: A classification of optimization problems in NPO according to their approx-
imability.

PO

FPTAS

PTAS

APX

NPO
Pseudo-polynomial time

From the computational point of view, we can precisely classify NPO problems based

on their approximability.

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NPO

We emphasize that, under the assumption of P 6= NP, all these inclusions are strict.

Indeed, the problem Knapsack4 is known to be in FPTAS (see [IK75]) but not in PO

due to the fact that the underlying decision problem was shown to be NP-complete (see

[Kar72]). Another problem, that belongs to PTAS but does not belong to FPTAS,

is Euclidean TSP (see [Aro98]). It is considered as a variant of TSP where each

node of graph is presented as a point in the Euclidean space and the distance between

the two nodes is the Euclidean distance between the corresponding points. A repre-

sentative example of the class APX is Max-k-Sat (k ≥ 1). It was shown in [Joh74]

that this problem is in APX, and it was shown in [PY91] that it does not belong to

PTAS. Besides the classes APX, PTAS, FPTAS, there is a class of problems that

are pseudo-polynomial time solvable. Intuitively, an algorithm for a problem Π is called

pseudo-polynomial time if its running time is always bounded by a polynomial in size

of problem instance and in size of largest element in the instance. Figure 2.2 illustrates

the relationship between the complexity classes of NPO problems.

4Given a finite set A, a size s(a) ∈ N+ and a value v(a) ∈ N+ for every a ∈ A, and a positive integer
B, find a subset A′ ⊆ A such that

∑
a∈A′ s(a) ≤ B and such that

∑
a∈A′ v(a) is maximized.

22

2.3 Approximation Algorithms

Techniques for designing approximation algorithms

Many different techniques are used to design approximation algorithms, which can be

broadly categorized into the following classes: combinatorial algorithms, linear program-

ming, semi-definite programming, randomized (and derandomized) algorithms. Within

each class, standard algorithmic designs techniques such as local search, divide and con-

quer, greedy method, and dynamic programming are often adopted with a great deal of

ingenuity. In literature, one can find many useful textbooks that cover this topic, and we

recommend to, among others, the ones of Vazirani [Vaz03], Hochbaum [Hoc95], Ausiello

et al. [GA99] and Williamson and Shmoys [DW11]. In the following we briefly sketch

two standard techniques that will be used for designing approximation algorithms in

this thesis, namely, greedy algorithm and dynamic programming.

Greedy: This algorithm is used for constructing successively a set of solutions, based on

making locally optimal decision at each step of the algorithm, towards a global optimum.

The advantages of using greedy algorithm lie in the fact that it is very easy to design

and implement and especially requires much less amount of computational resources

in practice. In some cases, the greedy method yields optimal solutions (e.g, Minimum

Spanning Tree, using Prim’s algorithm or Kruskal’s algorithm). In some other cases,

it returns good approximation solutions. For instance, consider the problem Load

Balancing where we wish to assign a set ofm jobs to n identical machines in such a way

that the time in which all jobs are finished is as small as possible, given that executing

a job j on any of n machines takes time pj (pj > 0 for all j). A greedy algorithm for

the problem is followed by the rules: for each job j, 1 ≤ j ≤ m, we assign it to the

machine whose current load is smallest. Obviously, the running time of the algorithm is

polynomial time inm and n. This algorithm is known as List Scheduling algorithm which

was introduced by Graham [Gra66, Gra69]. Furthermore, Graham proved that this

greedy algorithm gives a 2-approximation. To the best of our knowledge, List Scheduling

is the first polynomial-time approximation algorithm known for a NP-hard problem.

Another simple example of greedy approximation algorithm is for a variant of Traveling

Salesman Problem, say Metric TSP, where the distances between the nodes of the

graph satisfy the triangle inequality, see [CLRS09]. The algorithm is based on the solving

exactly a Minimum Spanning Tree and has an approximation factor of 2. Many other

approximation algorithms using the greedy technique can be found in the textbooks of

Ausielo et al. [ACG+99] and of Williamson and Shmoys [DW11]. In this thesis, by

greedy method, we will provide a first approximation algorithm for the problem of

maximizing Nash product social welfare (see Theorem 3.11 and Theorem 3.12), and

23

Chapter 2 Preliminaries

a PTAS for the case with two agents having the same additive utility functions (see

Theorem 3.5).

Dynamic programming: This is a very useful technique for solving efficiently many

optimization problems in which one can build up from locally optimal solutions of sub-

problems to obtain a globally optimal solution. The crucial point to use this technique is

formulating the solution process as a recursion. The use of dynamic programming in de-

signing approximation algorithms has been intensively studied in the past decades. Par-

ticularly, it is an efficient tool to design (fully) polynomial-time approximation scheme

for a variety of optimization problems. For example, by simplifying the input data in

a suitable way (e.g, rounding a number x to the nearest integer or merging the two

numbers into one of the same value, or even deleting a part of unnecessary data), we

can transform an original instance into a more easy-to-tackle instance. Thereby, it can

be solved by applying dynamic programming and then obtain a good approximation so-

lution to the original instance. This approach was first used in the work of Horowitz and

Sahni [HS74] to solve Partition problem. Sahni [Sah76] applied it to provide a PTAS

for Minimum Makespan on two machines. Also, based on this approach, Hochbaum

and Shmoys [HS87] designed an approximation scheme for Minimum Makespan on

parallel machines and Arora [Aro98] proposed a PTAS for Euclidean TSP. In this

thesis, by applying the same approach, we will give a PTAS for Max-ANSW problem

for the case of identical agents (see Theorem 3.7).

Another remarkable approach proposed by Ibarra and Kim [IK75] adds a procedure to

the execution of the dynamic programming algorithm. This procedure will remove some

unnecessary solutions of subproblems during the execution of the algorithm and allows

us to keep the algorithm’s memory as low as possible. As a consequence, the algorithm

may return the inexact solution but it runs in polynomial time and we are able to obtain

a good approximation. Approximation schemes for many scheduling problems by using

this approach can be found in the sequence of papers [Sah76, PW92, KK98, KPW94].

In this thesis, we use again this approach to present an FPTAS for the problems Max-

ESW, Max-TNSW, Max-ANSW, and Minimum Envy (opt1, opt2).

Techniques for proving hardness of approximation

For many optimization problems, it is even hard to approximate them to a certain

factor. Now, the question is, given an optimization problem, for which values of α does

there not exist an α-approximation algorithm which runs in polynomial time? There

24

2.3 Approximation Algorithms

are several useful techniques for dealing with such question. Among those, perhaps the

most oldest and simplest one is using a so-called gap-introducing reduction. This type

of reduction is much stronger than the polynomial-time many-one reduction that used

to prove the NP-completeness of decision problems. It was used for the first time in

[SG76] to prove the non-existence of any polynomial-time f(n)-approximation algorithm

for the general TSP for any polynomial-time f .

Definition 2.8 (α-gap-introducing reduction) Let A be a NP-complete problem,

Π be an optimization problem, and α be a polynomial-time computable function of the

input size. An α-gap-introducing reduction from A to Π is given by two polynomial-time

computable functions f and g such that for each instance x of A, g(x) is an instance

of Π such that:

1. If Π is a maximization problem then α(|x|) < 1 and:

• if x is yes-instance of A then OPT (g(x)) ≥ f(x), and

• if x is no-instance of A then OPT (g(x)) < α(|x|) · f(x).

2. If Π is a minimization problem then α(|x|) > 1 and:

• if x is yes-instance of A then OPT (g(x)) ≤ f(x), and

• if x is no-instance of A then OPT (g(x)) > α(|x|) · f(x).

Note that an α-approximation algorithm B for a maximization problem Π that has a

α-gap-introducing reduction from a NP-complete problem A implies x ∈ A if and only

if the value of the solution B(g(x)) is greater than α(|x|) · f(x). Hence, there can be

no α-approximation algorithm for Π, unless P = NP. This important technique is

also used to prove the inapproximability for most of our optimization problems in this

thesis.

Another technique to give hardness results for NPO problems is via an L-reduction,

that was introduced by Papadimitriou and Yannakakis [PY91], from an optimization

problem that is known to be NP-hard to approximate within certain factors. This is

the current most successful reduction for proving the hardness of approximation. The

formal definition below is stated for maximization problems only, but would be similar

to the case of minimization ones.

25

Chapter 2 Preliminaries

Definition 2.9 (L-reduction) Let Π1 and Π2 be maximization problems. An L-

reduction from Π1 to Π2 is given by two polynomial-time computable functions f and g

and two parameters α and β such that for each instance x of Π1,

1. y = f(x) is an instance of Π2,

2. OPT (y) ≤ α ·OPT (x), and

3. for each solution s2 for y, s1 = g(s2) is a solution for x such that

OPT (x)− val(s1) ≤ β · (OPT (y)− val(s2)).

Having an L-reduction from Π1 to Π2 with parameters α,β and an (1−ε)-approximation

algorithm for Π2 implies a (1−αβε)-approximation algorithm for Π1 by invoking f on the

instance x of Π1 to get an instance y of Π2, then running the approximation algorithm

for Π2 on y and, at last, translating the solution back via g. Note that if Π1 does not

admit a (1− ε)-approximation algorithm and reduces to Π2 with parameters α = β = 1

then Π2 cannot have a (1− ε)-approximation algorithm either.

All hardness results presented in this thesis involve the use of two types of reductions

above. In order to get the stronger inapproximability results, it might be useful to take

other techniques into account such as: Probabilistically Checkable Proofs (PCPs) (see

[AS98] and [ALM+98]), using the reduction from Label Cover problem (see [ABSS93])

and using the Unique Games Conjecture that has been made recently by Subhash Khot

[Kho02]. For more details, we refer to a textbook by Vazirani [Vaz03], the survey of

Arora and Lund [AL96], the paper of Dinur [Din07] and the thesis of Arora [Aro94].

26

Chapter 3

Social Welfare Maximization Problems

Social welfare maximization problems can be described as a class of combinatorial op-

timization problems that seek to determine allocations of resources between agents,

so as to maximizing social welfare. For that reason, we also call them resource allo-

cation problems. Based on the type of social welfare being considered, a variety of

resource allocation problems can be investigated. Among those, we focus on the fol-

lowing problems, each corresponds to a type of social welfare: Maximum Utilitarian

Social Welfare, Maximum Egalitarian Social Welfare, Maximum Total

Nash Social Welfare and Maximum Average Nash Social Welfare. The

NP-completeness results for social welfare maximization problem under almost all nat-

urally appearing type of social welfare and cardinal preferences motivate the study of

approximation algorithms for these problems. The results in this chapter have been

published in [NRR12, NNRR12b, NNRR12a, NR13b, NRR, NNRR].

3.1 The Framework and Basic Definitions

Let A = {a1, a2, . . . , an} be a set of n agents and R = {r1, r2, . . . , rm} be a set of

m indivisible and nonshareable resources. Subsets of R are called bundles of resources.

Every agent associates utility to every bundle of resources by specifying a utility function

ui : 2
R → Q+. We denote by U = {u1, u2, . . . , un} the set of the agents’ utility functions.

A triple (A,R,U) is called a multiagent resource allocation setting (a MARA setting,

for short). Given a MARA setting, we define an allocation of resources as follows:

Definition 3.1 An allocation is a mapping π : A → 2R, ai →π(ai) = πi such that

•
⋃n

i=1 πi = R (i.e., every resource is given to some agent)

27

Chapter 3 Social Welfare Maximization Problems

• πi ∩ πj = ∅ for i 6= j (i.e., no resources are given to multiple agents).

Equivalently, an allocation is a partition of the set of m resources R into n subsets.

We denote an allocation by π = (π1, . . . , πn), where πi is the bundle assigned to agent

ai. If ΠA,R is the set of all possible allocations for a MARA setting (A,R,U) with

‖A‖ = n, ‖R‖ = m then ‖ΠA,R‖ = nm.

3.1.1 Representations of Utility Functions

As mentioned in the previous chapter, utility functions can be represented in different

forms, each has advantages and disadvantages depending upon the context of its use.

Particularly, the representation form potentially affects the complexity of the corre-

sponding allocation problems. In this thesis we will focus on the bundle form and the

k-additive form which are defined formally as follows.

The bundle form: A utility function u : 2R → Q+ is in bundle form if it is represented

by a list of pairs (R′, u(R′)) for any bundle R′ ⊆ R, omitting pairs with zero

utility. This representation form is “fully expressive” (i.e., every utility function

can be described in bundle form), but its drawback is a potentially exponential

representation size in the number of resources.

The k-additive form (for some fixed positive integer k): A utility function u : 2R → Q+

is in k-additive form if for each bundle T ⊆ R with ‖T‖ ≤ k, there is a unique

coefficient αT ∈ Q+ such that for every bundle R′ ⊆ R the following holds:

u(R′) =
∑

T⊆R′,‖T‖≤k

αT . (3.1)

This coefficient αT expresses the “synergetic” value of some agent owning all

the resources in T . This representation form is fully expressive only if k is large

enough. On the other hand, choosing k to be relatively small allows for a relatively

succinct representation of utility functions. Originally, Grabisch [Gra97] defined

the k-additive form. However, in multiagent resource allocation it was proposed for

representing utilities by Chevaleyre et al. [CEEM04, CEEM08] and, independently,

in combinatorial auctions by Conitzer et al. [CSS05].

The class of additive utility functions is a special case of the class of 1-additive

utility functions, where the empty bundle has always zero utility for all agents.

28

3.1 The Framework and Basic Definitions

Formally, a utility function u is additive if and only if for every bundle R′ ⊆ R,

we have:

u(R′) =
∑

r∈R′

u(r).

In practice, additive utilities are computationally much more appealing than gen-

eral utility functions. Therefore, a lot of resource allocation problems in the lit-

erature have been studied under an assumption that agents’ utility functions are

additive.

Both the bundle and the k-additive form (for large enough k) can be used to represent

any utility function and thus are equivalent in this sense. However, while the bundle

form is a direct representation that enumerates the agents’ nonzero utilities of bundles,

the k-additive form can be seen as an indirect representation using the so-called Möbius

inversion (see the work of Rota [Rot64] and Grabisch [Gra97]). Indeed, letting ui be a

set function over the set R of resources, the coefficients αS
i for S ⊆ R can be computed

as follows:

αS
i =

∑

T⊆S

(−1)‖S−T‖ · ui(S).

These two representations can be applied to any set function. The major difference

between them is that the bundle form is just one fixed way of specifying utility functions,

whereas the parameter k in the k-additive form allows one to fine-tune the trade-off

between expressiveness (for large values of k) and compactness (for small values of k).

The following example demonstrates the representation of utilities in the bundle and

the k-additive form.

Example 3.1 Consider a MARA setting M = (A,R,U) with A = {a1, a2} and R =

{r1, r2, r3} and the agents’ utilities as stated in Table 3.1.

In the bundle form, these utilities are represented as

({r2}, 3), ({r3}, 2), ({r1, r2}, 3), ({r2, r3}, 5), ({r1, r2, r3}, 3)

for agent a1, and for agent a2 as

({r1}, 2), ({r2}, 1), ({r1, r2}, 3), ({r1, r3}, 2), ({r2, r3}, 1), ({r1, r2, r3}, 3).

For the k-additive form, we adopt the notation from [CEEM04]. We first give the

coefficient α from (3.1) and then give the single resources of the corresponding bundle.

29

Chapter 3 Social Welfare Maximization Problems

Table 3.1: Utilities of the agents for Example 3.1

Bundles of Resources Agent a1 Agent a2

∅ 0 0

{r1} 0 2
{r2} 3 1
{r3} 2 0

{r1, r2} 3 3
{r1, r3} 0 2
{r2, r3} 5 1

{r1, r2, r3} 3 3

While for the utilities of agent a1 the 2-additive form is needed in our example, the

utilities of agent a2 can be given 1-additively. Omitting coefficients that are zero, we

write 3.r2 +2.r3 −2.r1.r3 to represent the utilities of agent a1 and 2.r1 +1.r2 to represent

those of agent a2.

3.1.2 Measures of Social Welfare

The notion of social welfare is a tool to assess and rank allocations based on specific

measures of quality. Thus, different allocations might be “the best allocation”, depend-

ing on the notion of social welfare that is employed. The most fundamental notions

of social welfare includes utilitarian social welfare, egalitarian social welfare and total

and average Nash (product) social welfare. Assuming agents’ preferences are specific by

utility functions, we give the formal definition of these notions of social welfare.

Definition 3.2 Let π = (π1, . . . , πn) be an allocation, we define

1. the utilitarian social welfare of π as swu(π) =
n
∑

i=1

ui(πi).

2. the egalitarian social welfare of π as swe(π) = min
1≤i≤n

{ui(πi)}.

3. the total Nash social welfare of π as swN (π) =
n
∏

i=1

ui(πi).

4. the average Nash social welfare of π as swN (π) =

(

n
∏

i=1

ui(πi)

)
1

n

.

30

3.1 The Framework and Basic Definitions

In this thesis, whenever we write “Nash social welfare”, we mean any one of total and

average version. As an additional notation, given a problem instance M = (A,R,U),

we denote the maximum utilitarian/egalitarian/total Nash/average Nash social welfare

of M by

maxt(M) = max{swt(π) | π ∈ ΠA,R}.

for t ∈ {u, e,N,N}.

Example 3.2 Consider a MARA setting M = (A,R,U) with A = {a1, a2, a3} and

R = {r1, r2, r3}, and agents’ utility functions has 1-additive form which are given in

Table 3.2.

Table 3.2: Utilities of the agents for Example 3.2.

Single resources Agent a1 Agent a2 Agent a3

∅ 0 0 0

r1 2 0 5
r2 1 2 3
r3 0 3 4

An allocation that maximizes utilitarian social welfare is that all resources are assigned to

agent a3 only, while the others get nothing. But if we want to optimize egalitarian social

welfare, there are two alternatives: the first one is that the single resources r1, r2, r3

are allocated to agents a1, a2, a3, respectively, and the second one is that r1 → a1, r3 →

a2, r2 → a3. Note that the latter allocation is maximizing Nash social welfare.

3.1.3 Problem Definitions

After introducing the notions of social welfare and the type of representation of utility

functions, the bundle form and the k-additive form, through which the agents’ prefer-

ences are expressed, we now give the formal definition of social welfare maximization

problems that are considered in this chapter. The first problem, denoted byMax-USW,

was studied originally in the context of combinatorial auction where the (utilitarian) so-

cial welfare has to be maximized. Formally, the problem is defined as follows:

31

Chapter 3 Social Welfare Maximization Problems

Maximum Utilitarian Social Welfare (Max-USW)

Input: A MARA setting M = (A,R,U) where A is a set of n agents, R is a set of

m resources and U is a set of agents’ utility functions.

Output: An allocation π = (π1, . . . , πn) such that
∑n

i=1 ui(πi) is maximal.

In contrast to Max-USW, the problem of maximizing egalitarian social welfare, which

is denoted by Max-ESW, concerns the question of how to assign resources to agents

so that the minimum of the sum of the values of the resources given to any agent

is maximal. This problem was indeed first studied as a machine scheduling problem

where the goal is to find an allocation of jobs between machines such that the minimum

completion time is maximized (see [Woe97]).

Maximum Egalitarian Social Welfare (Max-ESW)

Input: A MARA setting M = (A,R,U) where A is a set n of agents, R is a set of

m resources and U is a set of agents’ utility functions.

Output: An allocation π = (π1, . . . , πn) such that minni=1 ui(πi) is maximal.

The next two problems, denoted by Max-TNSW and Max-ANSW, aim to maximize

the total and average Nash social welfare of the society, respectively. Interestingly, while

the first two problems Max-USW and Max-ESW has been studied deeply for a long

time, the approximability of Max-TNSW and Max-ANSW have not been investigated

so far.

Maximum Total Nash Social Welfare (Max-TNSW)

Input: A MARA setting M = (A,R,U) where A is a set of n agents, R is a set of

m resources and U is a set of agents’ utility functions.

Output: An allocation π = (π1, . . . , πn) such that
∏n

i=1 ui(πi) is maximal.

Maximum Average Nash Social Welfare (Max-ANSW)

Input: A MARA setting M = (A,R,U) where A is a set of n agents, R is a set of

m resources and U is a set of agents’ utility functions.

Output: An allocation π = (π1, . . . , πn) such that (
∏n

i=1 ui(πi))
1/n is maximal.

32

3.2 State of the Art

It is worth pointing out that, although the two problems Max-TNSW and Max-

ANSW are obviously the same in the sense of computing exact optimal solutions, it is

not clear that whether their (in)approximability are transferred mutually. For instance,

despite the fact that Max-ANSW with the additive form admits a PTAS for the case of

identical agents (see Theorem 3.7), it is still not known whether or not the same result

can be applied to Max-TNSW.

3.2 State of the Art

The approximability and inapproximability of social welfare maximization problems

have been studied extensively in the past few decades, but most particularly during the

last few years. This section is devoted to give a short summary of the known results

in this area from literature. The results will be presented separately for each type of

representation of utility functions, either the bundle form or the k-additive form.

3.2.1 The Bundle Form

In the bundle form, the problem of maximizing utilitarian social welfare was studied

deeply in the context of combinatorial auctions where a set of indivisible items are

sold to bidders and each bidder may place bids on arbitrary subsets of those items.

The goal of the auctioneer is to partition the items amongst bidders in a way that

maximizes the revenue. In general, computing such a partition isNP-hard (see Rothkopf

et al. [RPH98] and Dunne et al. [DWL05]). Furthermore, Lehmann, O’Callaghan, and

Shoham [LOS99] proved that it cannot be approximated in polynomial time within a

factor ofm−1/2+ε unlessNP = ZPP1, wherem is the number of items. The lower bound

holds even for the case of single-minded bidders via an L-reduction from Maximum

Clique which is hard to approximate (see H̊astad [H̊as99]). Formally, given a set R

of m items, a bidder ai is said to be single-minded if there is a bundle Ri ⊆ R and

a value v ∈ Q+ such that ui(T) = ui(Ri) = v for any bundle T with Ri ⊆ T ⊆ R,

and ui(T) = 0 otherwise. Therefore, a combinatorial auction with n single-minded

bidders and a set R of items can be expressed by a sequence (R, (R1, u1), . . . , (Rn, un)),

where ui is the value of the “core bundle” Ri to bidder ai. Independently, Roos and

Rothe [RR10] provided a similar inapproximability result for Max-USW, but in the

context of resource allocation, following from a result of Chevaleyre et al. [CEEM08].

1
ZPP has been introduced by Gill [Gil77] as the class of decision problems that have a probabilistic
algorithm that, on every input, runs in expected polynomial time and never returns a wrong answer.

33

Chapter 3 Social Welfare Maximization Problems

Due to the hardness of Max-USW, many attempts have been made to find special cases

in which the problem can be solved or approximated efficiently. For example, instead

of considering general utility functions, we can restrict those to submodular functions

or subadditive functions2. The main reason for using these functions comes from the

properties themselves. Namely, they have similarly properties to convex functions in

optimization theory, and their structural characteristics can be taken advantage of al-

gorithmically. In other words, submodularity or subadditivity of functions can help to

make the related optimization problems approximable or even tractable.

In general, utility functions represented in the bundle form might be exponential in the

number of resources. Therefore, we need to specify how an algorithm can access its

input. Typically, we can resort to an oracle model that can answer a certain type of

queries about a utility function. The most simple model of oracle is value oracle, which

returns the utility of a given bundle of resources for a given agent.3 In this model,

Lehmann, Lehmann, and Nisan [LLN01] designed a greedy algorithm that achieves an

approximation factor of 1/2 for Max-USW, assuming utility functions are submodular.

The key idea of their algorithm is that every resource will be assigned to an agent with

maximal marginal value in the current allocation. Fleischer et al. [FGMS06], Calinescu

et al. [CCPV07], and Vondrák [Von08] improved their result to a (1−1/e)-approximation,

where e ≈ 2, 71828182 is Euler’s number. Khot et al. [KLMM08] proved that this bound

of 1− 1/e is tight: It is NP-hard to approximate Max-USW with a factor better than

1 − 1/e in the submodular setting. For the class of subadditive functions, Dobzinski,

Nisan, and Schapira [DNS10] presented a (1/
√
m)-approximation algorithm for Max-

USW. Our survey [NRR] provides a detailed summarization of the results that have

been obtained so far for Max-USW (most of them are in the context of combinatorial

auctions).

The approximability of Max-ESW with respect to the bundle form was studied by

the authors Golovin [Gol05], Goemans et al. [GHIM09] and Khot and Ponnuswami

[KP07] in the model of value oracle. Golovin [Gol05] gave a greedy approximation

algorithm for this problem with a factor of 1/(m−n+1) based on a matching technique,

when utility functions are submodular. This approximation factor was then improved to

1/
(

m
1/2n

1/4 logm log
3/2 n

)

by Goemans et al. [GHIM09]. The idea is to transform the original

problem to the Santa Claus problem, which was shown to be approximable by Asadpour

and Saberi [AS07, AS10]. In particular, when the number of agents is fixed, Chekuri,

2see the book of Schrijver [Sch03] for formal definitions.
3Other types of oracle such as demand oracle or general oracle was also studied in the context of
combinatorial auction.

34

3.2 State of the Art

Table 3.3: Summary of known (in)approximability results for the social welfare opti-
mization problems for the bundle form, using the model of value oracle.

Problem Submodular Reference Subadditive Reference

Max-USW 1/2 [LLN01] 1/
√
m [DNS10]

1− 1/e (randomize) [Von08]

Max-ESW 1− 1/e − ε (n = const) [CVZ10] 1/(2n−1) [CVZ10]

1/(m−n+1) [Gol05]

1/(m1/2n
1/4 logm log

3/2 n) [GHIM09]

Vondrák, and Zenklusen [CVZ10] gave an approximation algorithm for Max-ESW to

within a factor of 1 − (1/e) − ε, for any ε > 0. Khot and Ponnuswami [KP07] stud-

ied the case of subadditive utility functions and they propose a 1/(2n−1)-approximation

algorithm.

3.2.2 The Additive Form

In terms of additive form, the problem Max-USW is solvable in polynomial time. A

simple algorithm for that follows by the rule: every resource will be assigned to an agent

who has maximum utility for it. Unlike Max-USW, however, Max-ESW is NP-hard

even for the special case of identical agents, i.e, the value of each resource does not

depend on the agent to which it is assigned. The best inapproximability result known

so far for Max-ESW is due to Bezáková and Dani [BD05]: it cannot be approximated

in polynomial time within a factor of α > 1/2, unless P = NP. In the same paper, using

techniques based on matching as well as rounding techniques for linear programming

relaxation, Bezáková and Dani designed two approximation algorithms for Max-ESW,

both having a performance guarantee of 1/(m−n+1). Moreover, using linear programming

techniques, introduced by Lenstra et al. [LST90], the authors proved that one can obtain

a solution of value at least OPT − maxij ui(rj), where OPT denotes the value of the

optimal solution. However, the challenging case of the problem is when the condition

OPT ≤ maxij ui(rj) holds.

Golovin [Gol05] studied a restricted version of Max-ESW, which is also known as “Big

Goods/Small Goods.” In this restricted problem, the agents are allowed to choose among

three values only (0, 1, and some x > 1) to express their utilities. For the small goods,

each agent is allowed to assign utilities of zero and one, and for the big goods the allowed

35

Chapter 3 Social Welfare Maximization Problems

Table 3.4: Summary of known approximability results for the problem of maximizing
egalitarian social welfare for the additive form.

Max-ESW Approximability Reference

general 1/(m−n+1) [BD05]

1/n [Gol05]

Ω(1/
√
n log3 n) [AS07, AS10]

1/mε (for any ε = Ω(log logm/logm)) [CCK09]

identical agents PTAS [Woe97]

model of Big Goods/Small Goods 1/
√
n [Gol05]

m = n P [Gol05]

ui(rj) ∈ {0, 1} for all i, j P [Gol05]

ui(rj) ∈ {0, xj} for all i, j O(log log logn/log logn) [BS06]

ui(rj) ∈ {0, 1, x} for all i, j α/n (for any α ≤ n/2) [KP07]

values are zero and x > 1. Using min-cut and network flow techniques, Golovin [Gol05]

showed that this problem is approximable in polynomial time within a factor of 1/
√
n.

Khot and Ponnuswami [KP07] generalized this model of Big Goods/Small Goods by

considering the less restricted version in which the agents’ utilities for a resource are

either 0, 1, or x for some x > 1. For this case, they gave an (α/n)-approximation

algorithm that runs in time mO(1)nO(α). Golovin [Gol05] also studied another special

variant of Max-ESW where there are as many agents as resources (i.e., m = n). It is

then easy to see that each agent must get at least one resource to obtain an egalitarian

social welfare distinct from zero. Hence, this problem can be solved in polynomial

time [Gol05].

Bansal and Sviridenko [BS06] investigated another restriction of Max-ESW under the

name of the Santa Claus problem: If only two values are allowed for each single resource

(i.e., rj has either some value xj or zero for each of the agents), then there is an

O(log log logn/log logn)-approximation. Their method was based on rounding a certain

type of linear programming (LP) relaxation that was also known as configuration LP.

Later on, Feige [Fei08] showed that the value obtained by this LP relaxation estimates

the optimum value to within a constant (unspecified) factor. However, his algorithm is

not constructive, that is, it does not allow to actually find the corresponding allocation

in polynomial time. At the same time, Asadpour, Feige and Saberi [AFS08] proved that

the integrality gap of the configuration LP is no worse than 1/5 (this factor was then

36

3.3 Our Results

improved to 1/4 in [AFS12], the journal version of [AFS08]). Their approach was based

on the local search algorithms for computing perfect matchings in certain classes of

hypergraphs. Nevertheless, the local search algorithm they provided for finding a (1/4)-

approximation allocation takes 2n steps and thus, is not a polynomial-time algorithm.

In the general case, Asadpour and Saberi [AS07, AS10] proposed an improved approxi-

mation algorithm that achieves a factor of Ω(1/
√
n log3 n) for Max-ESW, using the same

LP relaxation that Bansal and Sviridenko [BS06] employed. The best known approx-

imability result so far for the general problem was made by Chakrabarty et al. [CCK09]:

They presented an O(1/mε)-approximation algorithm for any ε ∈ Ω(log logm/logm) that

runs in time mO(1/ε). Note that this result can also be used to obtain an approximation

in terms of the number of agents.

Building and improving on the work of Deuermeyer et al. [DFL82] and Csirik et

al. [CKW92], Woeginger [Woe97] studied the problem Max-ESW for the case where

agents have the same utility on each single resource, and he designed a PTAS for it.

Since this problem is NP-complete in the strong sense [GJ79], there can be no FPTAS

for it, unless P = NP.

The known approximability results for the problem Max-ESW with the additive form

are summarized in Table 3.4. For the more detail, we refer to the survey [NRR].

3.3 Our Results

In this section, we analyse the approximability and inapproximability of the social wel-

fare maximization problems. The results are presented according to whether they are

negative or positive.

In section 3.3.1 we derive the lower bounds on the approximation of the problems

Max-USW, Max-ESW, Max-TNSW and Max-ANSW, focusing on both types of

representation of utility functions. We show that unless P = NP, Max-USW and

Max-TNSW with 2-additive utilities are not in PTAS. In fact, there does not ex-

ist (21/22 + ε)-approximation algorithm for these two problems for any ε > 0, unless

P = NP. The slightly stronger lower bounds for Max-TNSW and Max-ANSW with

additive utilities are obtained via an L-reduction. In particular, we prove that there

is no approximation algorithm for Max-ESW, Max-TNSW and Max-ANSW when

utility functions are represented in the bundle form or in the 3-additive form.

37

Chapter 3 Social Welfare Maximization Problems

In section 3.3.2 we provide the upper bounds for Max-ESW, Max-TNSW and Max-

ANSW assuming additive utility functions. First we design a PTAS for Max-TNSW

when there are only two identical agents and then extend this result to the case with any

number of agents. The proof is based on integer programming, and relies on rounding

the resources to the “big” and “small” ones. Second, we prove that our optimization

problems have an FPTAS if the number of agents is constant. Finally, we propose a first

approximation algorithm for Max-TNSW and Max-ANSW and present a polynomial-

time algorithm for the case when the number of agents and the number of resources are

the same.

3.3.1 Inapproximability Results

The bundle form

Roos and Rothe [RR10] raised the question of whether Max-ESW and Max-TNSW

is as hard to approximate as Max-USW given the bundle form of agents’ preferences.

It turns out that the reduction from 3-Sat used to prove the NP-completeness of the

decision versions of Max-ESW and Max-TNSW in [RR10] is sufficient to show the

inapproximability of these optimization problems. In the proof of the proposition below

we are using the reduction from another NP-complete problem, Exact Set Cover

(XSC, for short), that may seem to be much more simple than the one of Roos and Rothe

[RR10]. The results show that Max-ESW, Max-TNSW and Max-ANSW cannot be

approximated in polynomial time within any factor, unless P = NP, whenever the

preferences of agents are modelled in terms of the bundle form.

Exact Set Cover (XSC)

Given: A finite set B = {b1, . . . , bm} and a family S = {S1, . . . , Sn} of subsets

of B.

Question: Is there a subset I ⊆ {1, . . . , n} such that {Si | i ∈ I} is a partition of B,

i.e.,
⋃

i∈I Si = B and Si ∩ Sj = ∅ for all distinct i, j ∈ I?

Theorem 3.1 Unless P = NP, there is no α-approximation algorithm for the problems

Max-ESW, Max-TNSW and Max-ANSW with the bundle form, for any factor α.

This even holds when the utilities are restricted to the domain {0, 1}.

Proof. It suffices to prove the claim for Max-ESW as the cases of Max-TNSW

and Max-ANSW then follow directly. Let (B,S) with B = {b1, . . . , bm} and S =

38

3.3 Our Results

{S1, . . . , Sn} be an instance of XSC. Construct a new instance M = (A,R,U) of Max-

ESW as follows. Let A = {a1, . . . , an} be our set of agents, and let R = B be our set of

m resources. For each i, 1 ≤ i ≤ n, the utility function of agent ai is defined as

ui(T) =

1 if T = ∅ or T = Sj for some j

0 otherwise.

If (B,S) is a yes-instance of XSC then there exists some set I ⊆ {1, . . . , n} such that

{Si | i ∈ I} is a partition of B, i.e.,
⋃

i∈I Si = B and Si ∩ Sj = ∅ for all distinct i, j ∈ I.

Hence, by assigning the bundle Si to agent ai for each i ∈ I and the empty bundle to

all remaining agents, we have obtained an allocation which has the egalitarian social

welfare of 1. It follows that maxe(M) ≥ 1.

Conversely, suppose (B,S) is a no-instance of XSC. As all resources need to be allocated,

there is always at least one agent ai, for some i, who is not assigned her preferred bundle

Si. This implies that the optimal social welfare value is zero: maxe(M) = 0.

To sum up, if one could approximate in polynomial time to any factor for Max-ESW,

one could thus decide XSC in polynomial time, contradicting NP-hardness of XSC

unless P = NP. ❑

The k-additive form

In the k-additive form, Max-USW is in P if k = 1, but is NP-hard for any fixed

k ≥ 2. This result was given by Chevaleyre et al. [CEEM08], using a reduction from

the decision version of Max-2-Sat. We will show that, for the 2-additive utilities, this

is also an L-reduction from Max-2-Sat to Max-USW which immediately implies an

inapproximability result for the latter problem .

Maximum 2-Satisfiability (Max-2-Sat)

Input: A boolean formula ϕ in conjunctive normal form consisting of clauses hav-

ing two literals each.

Output: A truth assignment to the variables of ϕ that maximizes the number of

satisfied clauses.

39

Chapter 3 Social Welfare Maximization Problems

The best (unconditional4) inapproximability result currently known for Max-2-Sat is

due to H̊astad [H̊as01], who shows that this problem is NP-hard to approximate within

a factor of 21/22 ≈ 0.9545.

Proposition 3.1 Max-USW with the k-additive form, for a fixed k ≥ 2, cannot be

approximated in polynomial time to within any factor better than 21/22, unless P = NP.

This result holds even when there are only two agents.

Proof. It suffices to prove the claim for k = 2 since the 2-additive form is a special

case of the k-additive form for any k > 2.

Let ϕ be an instance of Max-2-Sat. The Max-USW instance M = (A,R,U) con-

structed from ϕ has two agents (i.e., A = {a1, a2}), each resource in R corresponds to a

propositional variable occurring in ϕ, and the agents’ utilities are set in 2-additive form.

The utility function of agent a1 is defined by Chevaleyre et al. [CEEM08] as the sum of

the following 2-additive terms each of which corresponds to a clause of ϕ:

• xi if the clause has the form xi ∨ xi,

• (1− xi) if the clause has the form ¬xi ∨ ¬xi,

• xi + xj − xi · xj if the clause has the form xi ∨ xj , i 6= j,

• xi + (1− xj)− xi(1− xj) if the clause has the form xi ∨ ¬xj , i 6= j, and

• (1− xi) + (1− xj)− (1− xi)(1− xj) if the clause has the form ¬xi ∨ ¬xj , i 6= j.

Agent a2’s coefficients are defined as αT
2 = 0 for all bundles T ⊆ R, ‖T‖ ≤ 2.

Note that every assignment τ of truth values to the propositional variables of ϕ corre-

sponds to a resource allocation Xτ for M , since agent a1 receives resource xi exactly if xi

is set to true under τ . It follows that swu(Xτ) equals the number of clauses in ϕ satisfied

by τ . Thus maxu(M) equals the maximum number of satisfiable clauses in ϕ. Since this

is an L-reduction from Max-2-Sat to Max-USW, the inapproximability bound of 21/22

for Max-2-Sat due to H̊astad [H̊as01] immediately transfers to Max-USW. ❑

Unlike the problem of finding the maximum utilitarian social welfare, the problems

of maximizing the egalitarian and Nash social welfare are NP-hard with respect to

the additive form. This result is proved by using a gap-reduction from Partition

4Khot [KGMO07] show that Max-2-Sat is NP-hard to approximate within a factor better than
roughly 0.9439, provided that the so-called “Unique Games Conjecture” holds.

40

3.3 Our Results

problem and holds even for very restricted case with only two agents having the same

utility functions (see Bouveret et al. [BLFL05], Roos and Rothe [RR10], Lipton et

al. [LMMS04]). As a consequence, Max-ESW, Max-TNSW and Max-ANSW are

NP-hard for the k-additive form for any fixed k ≥ 1.

The inapproximability of Max-ESW was studied first by Bezáková and Dani [BD05]

nearly ten years ago. In fact, they showed a hardness factor of 1/2 for this problem

for additive utility functions. An improving of this bound is still a challenge now. For

both Max-TNSW and Max-ANSW, there is no lower bound known so far. Note

that the reduction from Partition for the NP-completeness proof does not yield any

inapproximability results for Max-TNSW and Max-ANSW. In the following we will

give the first lower bound results for these two optimization problems.

For the case of 2-additive utilities, one can get a first hardness result for Max-TNSW

by modifying a bit the proof of Proposition 3.1. More detail, we change slightly the

L-reduction from Max-2-Sat as follows: For agent a2, the empty bundle has utility one

and all other bundles with at most two resources have utility zero. Thus the number

of clauses satisfied is exactly the maximum total Nash social welfare. Everything else

remains unchanged. Using again the lower bound of α = 21/22 for Max-2-Sat due to

H̊astad [H̊as01], the result follows immediately.

We next propose a gap-reduction from the NP-complete problem Exact Cover by

3-Sets (or X3C, for short) which yields a first 8/9-hardness result for Max-TNSW and

another 2
√
2/3-hardness result for Max-ANSW, when agents’ utilities are additive. The

formal definition of X3C is as follows:

Exact Cover by 3-Sets (X3C)

Given: A finite set B with ‖B‖ = 3q and a family S = {S1, . . . , Sn} of 3-element

subsets of B.

Question: Is there a subcollection S ′ ⊆ S such that every element of B occurs in

exactly one member of S ′?

Theorem 3.2 Max-TNSW with the additive form cannot be polynomially approxi-

mated within a factor better than 8/9, unless P = NP.

Proof. Let (B,S) with ‖B‖ = 3q and S = {S1, . . . , Sn} be an instance of X3C.

Without loss of generality (w.l.o.g), assume that n > q. Construct an instance M =

(A,R,U) of Max-TNSW as follows. Let A be a set of n agents, where agent ai

corresponds to Si, and let R = B ∪ D be a set of m = 2q + n resources. That is,

41

Chapter 3 Social Welfare Maximization Problems

there are 3q “real” resources that correspond to 3q elements of B, and there are n − q

“dummy” resources in D. Define the agents’ utilities as follows. For each ai ∈ A and

each rj ∈ R, define

ui(rj) =

1/3 if rj ∈ Si

1 if rj ∈ D

0 otherwise.

Suppose that (B,S) is a yes-instance of X3C. Then there exists a set I ⊆ {1, . . . , n},

‖I‖ = q, such that Si ∩ Sj = ∅ for all i, j ∈ I, i 6= j, and
⋃

i∈I Si = B. Hence, we

assign the bundle Si to agent ai for each i ∈ I, and the dummy resources to the n − q

remaining agents. This allocation maximizes the total Nash social welfare, which now is

at least 1. Furthermore, the sum of all agents’ individual utilities is at most n. Hence,

the product of the agents’ individual utilities is maximal if and only if all agents have

the same utility, which exactly equals 1.

Conversely, if (B,S) is a no-instance of X3C, we show that the maximum total Nash

social welfare is at most 8/9. Note that the sum of all agents’ utilities is still at most n in

this case. Let (π1, . . . , πn) be an optimal allocation for the instance M . As a shorthand

(and slightly abusing notation), we denote by ui the utility of agent ai for his or her

bundle πi. Without loss of generality, we assume that
∑n

i=1 ui = n. The goal is to find

values u1, . . . , un that maximize the product
∏n

i=1 ui, where ui ∈ {1/3, 2/3, 1, 4/3, 5/3, 2}

for each i, 1 ≤ i ≤ n. (Note that no agent ai can receive more than one dummy

resource, otherwise one could reassign the dummy resource to an agent who realizes less

than utility one.)

If ui = 1/3 for some i, then there exists a j 6= i such that uj = 1 + (ℓ/3) for some

ℓ ∈ {1, 2, 3}. Clearly, by replacing ui and uj in
∏n

i=1 ui by ui + (ℓ/3) and uj − (ℓ/3),

respectively, we will get a product that is greater. By the same argument for the cases

ui = 5/3 and ui = 2, we have that the value domain of the agents’ utilities is reduced

to {2/3, 1, 4/3}. Since (B,S) is a no-instance of X3C, there must be at least one agent

whose bundle has a value less than 1. This implies that the product
∏n

i=1 ui has the

form of (8/9)z for some integer z ≥ 1 and reaches the maximal value of 8/9 with z = 1.

Therefore, an approximation algorithm with a factor better than 8/9 will distinguish the

“yes” and “no” instances of X3C. ❑

Theorem 3.3 Max-ANSW with the additive form cannot be polynomially approxi-

mated within a factor better than 2
√
2/3, unless P = NP.

42

3.3 Our Results

Proof. We use again the gap-reduction as in the proof of Theorem 3.2. By the same

argument, one can show that the value of an optimal solution for instanceM constructed

from the given instance (B,S) of X3C, equals 1 if (B,S) is yes-instance, and is less than

or equal to n
√

8/9, otherwise. Note that n
√

8/9 ≤
√

8/9 = 2
√
2/3 for all n ≥ 2. Hence, for

any ε > 0, an (2
√
2/3 + ε)-approximation algorithm for Max-ANSW will decide X3C

in polynomial time. This contradicts the NP-completeness of X3C. The theorem is

proved. ❑

As the additive form is special case of the k-additive form for any k ≥ 1, all the

hardness results with respect to the former can be transformed immediately to the latter.

Our next aim is to establish the stronger inappoximability results for the case with

k ≥ 3. In particular, given the agents’ preferences described by the 3-additive utility

functions, we show that the problems Max-ESW, Max-TNSW and Max-ANSW are

inapproximable in polynomial time within any factor, unless P = NP. The proof is

similar to the one of Theorem 3.1, but this time, the gap-reduction is from X3C instead

of XSC.

Theorem 3.4 If agents’ utility functions are represented by the k-additive form for any

fixed k ≥ 3, there is no α-approximation algorithm for Max-ESW, Max-TNSW and

Max-ANSW for any factor α < 1, unless P = NP.

Proof. It suffices to prove the claim for the case of Max-ESW with the 3-additive

from. Let (B,S) be an instance of X3C, where ‖B‖ = 3q and S = {S1, . . . , Sn}.

Construct an instance M = (A,R,U) of Max-ESW as follows. The set of q agents is

A = {a1, . . . , aq} and the set of resources is R = B. For each agent ai ∈ A, define the

coefficients in the 3-additive representation of ai’s utility function as follows:

αT
i = αT =

1 if T = Sj for some j

0 otherwise.

Suppose that (B,S) is a yes-instance of X3C. Then there exist n pairwise disjoint subsets

S1, . . . , Sq of S such that
⋃

1≤i≤q Si = B. Hence, assigning the bundle Si to agent ai for

each i, 1 ≤ i ≤ q, we obtain an allocation that has the value of 1. Thus, maxe(M) ≥ 1.

Conversely, we show that if (B,S) is a no-instance of X3C, then there is at least one

agent who owns a bundle T ⊆ B such that T does not contain any subset Si ∈ S. This

implies that swe(π) = 0 for every allocation π, so maxe(M) = 0. Indeed, assume that all

43

Chapter 3 Social Welfare Maximization Problems

agents are assigned bundles containing some Sj ∈ S. Since the resources are indivisible

and nonshareable, there must be n pairwise disjoint subsets in S that are an exact cover

of B, a contradiction.

Therefore, if there is a polynomial-time approximation algorithm that approximates

Max-ESW within any factor, then it could distinguish yes- from no-instances of X3C.

This contradicts the NP-hardness of X3C unless P = NP. ❑

3.3.2 Approximability Results

All approximation algorithms and exact polynomial-time algorithms in this section are

achieved under an assumption that agents represent their preferences by the additive

utility functions. However, some of the results can be transferred immediately to the

case of the k-additive functions and the case of submodular functions. The techniques

used for designing approximation algorithms include greedy algorithms, dynamic pro-

gramming and integer programming.

A PTAS for Max-TNSW and Max-ANSW for the case with two identical agents

As mentioned earlier, even for the simplest case with two agents having identical utilities

for the resources, Max-TNSW and Max-ANSW are still NP-hard. However, we can

show that this case can be approximated efficiently to within any factor less than 1, by

using greedy algorithm.

Theorem 3.5 Max-TNSW admits a PTAS when restricted to only two agents having

the same additive utility functions.

Proof. Let M = (A,R,U) be a problem instance with two agents (i.e., A = {a1, a2})

and nonnegative utilities u1(r) = u2(r) ≥ 0 for all r ∈ R. Let u denote this utility

function, i.e., u = u1 = u2. Consider the following greedy algorithm for our problem.

Intuitively, this algorithm seeks to find disjoint subsets π1 and π2 of R such that π1∪π2 =

R and the product u(π1) · u(π2) is maximized, where u(T) =
∑

r∈T u(r). Without loss

of generality, we can assume that π1 is assigned to agent a1 and π2 is assigned to agent

a2. Let ε be any fixed constant such that 0 < ε < 1.

44

3.3 Our Results

Algorithm 1 A greedy algorithm giving a PTAS for Max-TNSW

1: Sort the resources in nonincreasing order of their utilities to get a sequence
(r1, r2, . . . , rm) such that u(r1) ≥ u(r2) ≥ · · · ≥ u(rm).

2: Set ℓ := ⌈−1 + 1/
√
1−ε⌉.

3: Perform an exhaustive search for an optimal solution (π1, π2) over the ℓ resources
of (r1, r2, . . . , rℓ).

4: for i := ℓ+ 1 to m do
5: if u(π1) ≤ u(π2) then
6: π1 := π1 ∪ {ri}
7: else
8: π2 := π2 ∪ {ri}
9: end if

10: end for
11: return (π1, π2)

We now prove that Algorithm 1 is a (1−ε)-approximation algorithm for Max-TNSW in

our restricted setting. We need to show that the algorithm always returns in polynomial

time two subsets π1 and π2 such that

u(π1) · u(π2) ≥ (1− ε)OPT (3.2)

where OPT is the optimal value of the instance M .

Without loss of generality, we assume that u(π1) ≥ u(π2) and that rj is the last resource

that was assigned to agent a1. This implies that u(π2) ≥ u(π1)− u(rj). By addition of

u(π2) to the two sides of the inequality we get

2u(π2) ≥ u(R)− u(rj)

or

u(π2) ≥
1

2
(u(R)− u(rj)). (3.3)

If j ≤ ℓ, it is easy to see that the obtained solution is indeed an optimal solution.

Otherwise, we have u(rj) ≤ u(ri) for any 1 ≤ i ≤ ℓ, since the sequence (r1, r2, . . . , rm)

was sorted in nonincreasing order according to their utilities. Therefore, one can easily

check that

u(R) ≥ (ℓ+ 1)u(rj)

or, equivalently
u(rj)

u(R)
≤

1

(ℓ+ 1)
. (3.4)

45

Chapter 3 Social Welfare Maximization Problems

Furthermore, assume that π∗ = (π∗
1, π

∗
2) is an optimal allocation for M , then due to the

well-known inequality a · b ≤ (a+b)2/4, we have:

OPT = u(π∗
1) · u(π

∗
2) ≤

(u(π∗
1) + u(π∗

2))
2

4
=

(u(R))2

4
. (3.5)

Using inequality (3.3) and (3.5) we get

u(π1) · u(π2)

OPT
≥

(u(π2))
2

(u(R))2

4

≥

(

u(R)

2
−

u(rj)

2

)2

(u(R))2

4

=

(

1−
u(rj)

u(R)

)2

.

Now, using inequality (3.4) we obtain

u(π1) · u(π2) ≥

(

1−
1

ℓ+ 1

)2

OPT

≥ (1− ε)OPT .

The running time of Algorithm 1 is dominated by the work in lines 1 and 3, since

the other steps have a smaller cost. At line 1 of the algorithm, we need to sort the

sequence of m resources, which takes time O(m logm). Regarding line 3, we have to

search exhaustively on the set of subsets of {r1, . . . , rℓ}, and we need time O(2ℓ) ⊆ O(1)

(since ℓ is constant) to do this. In total, our algorithm runs in polynomial time, more

precisely in time O (m logm). This completes the proof. ❑

Similarly to the case of Max-TNSW, we have the following theorem. We omit the proof

here since it is similar to the one of Theorem 3.5, except choosing ℓ = ⌈−1 + 1/(1−ε)⌉.

Theorem 3.6 Max-ANSW admits a PTAS when restricted to only two agents having

the same additive utility functions.

A PTAS for Max-ANSW for the case of unbounded identical agents

We now generalize the result in Theorem 3.6 to the case of an unbounded number of

identical agents. Note that this restricted version is known to be strongly NP-hard and

that obtaining an FPTAS is impossible, unless P = NP. However, we will show that

one can get a PTAS for Max-ANSW based on the technique of rounding resources and

using integer programming. The method can be seen as, and was largely inspired by,

46

3.3 Our Results

an adaptation of the methods due to Alon et al. [AAWY97, AAWY98]. Unfortunately,

this method fails when applied to Max-TNSW.

Theorem 3.7 Max-ANSW admits a PTAS for the case where all agents have the

same additive utility functions.

Proof. We first give an outline of the proof. Let ε be any fixed positive number less

than 1. We will present a polynomial-time algorithm such that for any given instance

M of Max-ANSW, it outputs an allocation π′ for M such that swN (π′) > (1−ε)OPT ,

where OPT is value of an optimal allocation forM . The algorithm are divided into three

stages: (1) Construct a new instance M∗ from M by rounding the values of the single

resources; (2) Find an optimal solution π∗ for M∗ using integer program; (3) Compute

an allocation π′ from π∗ in polynomial time. These three stages of the algorithm are

summarized in a diagram below.

M = (A,R, u)
(1)

// M∗ = (A,R∗, u∗)

(2)

��

π′ = (π′
1, . . . , π

′
n) π∗ = (π∗

1, . . . , π
∗
n)

(3)
oo

Let M = (A,R, u) be a problem instance in which A = {a1, . . . , an} and R =

{r1, . . . , rm} are the sets of agents and resources, respectively, and agents have the

same additive utility function u > 0. Let

L =
1

n
·

m
∑

j=1

u(rj)

be the average utility of the agents. If there is some resource rj with u(rj) ≥ L, there

will be an optimal allocation for M in which rj is the only single resource assigned to

some agent ap. Indeed, assume that there is an agent ap whose bundle contains rj and

another resource rs. That means u(rj + rs) > L, so there must be at least one agent aq

owning a bundle of value less than L. By assigning rs again to agent aq instead of ap,

it is easy to see that the new allocation is better than the old one, due to the property

of the objective function. Therefore, it suffices to construct a PTAS for the case where

every single resource has a value less than L. For the other cases, we will assign each

single resource with a value greater than or equal to L to some agent, delete them all

from the list, and then design a PTAS for the obtained instance.

47

Chapter 3 Social Welfare Maximization Problems

Furthermore, we can also prove that if R does not contain any single resource of value

greater than or equal to L, then there will be an optimal allocation π = (π1, . . . , πn)

such that
L

2
< u(πi) < 2L

for all i = 1, . . . , n.

First, if there exists an allocation in which agent ai owns the bundle πi with u(πi) ≥ 2L,

one can obtain a better allocation by moving some single resource in πi to another

agent who owns a bundle of value less than L. Second, assume that u(πp) ≤ L/2 for

some agent ap. Then there must be an agent aq owning the bundle πq with u(πq) > L.

If πq contains some single resource with value less than u(πq)−u(πp), then by assigning

this resource to agent ap instead of aq, we obtain a better allocation. Otherwise, agent

aq must own at least two single resources of value greater than u(πq) − u(πp) > u(πp).

Then, by assigning one of these two resources to ap and the bundle πp to aq, we will get

again a better allocation.

Now we will show the method of rounding the values of the resources of M which leads

to an easily solvable instance M∗ (see [AAWY97, LMMS04]). Let α be some constant

positive integer which depends on ε.

Construct instance M∗ = (A,R∗,u∗). The set of agents is the same as in M . For

each resource rj ∈ R with u(rj) > L/α, create a corresponding resource r∗j of value

u∗(r∗j) =
L

α2
·

⌈

u(rj)
L/α2

⌉

.

Such a resource r∗j is called a big resource. Moreover, for any big resource r∗j , it is easy

to prove that:

u(rj) ≤ u∗(r∗j) ≤
α+ 1

α
· u(rj).

For the set T of all remaining resources rj ∈ R with u(rj) ≤ L/α, let

S =
L

α
·

⌈

u(T)
L/α

⌉

.

Create S · (α/L) new resources, each having a value of L/α. These resources are called

small resources. Let R∗ be the set of all the big and small resources that have been

created. Clearly, ‖R∗‖ ≤ m. Let

L∗ =
1

n

∑

r∗∈R∗

u∗(r∗).

48

3.3 Our Results

One can check that L ≤ L∗. Since each resource in R∗ has a value of at most L (and so

of at most L∗), we can show that there exists an optimal allocation π∗ = (π∗
1, . . . , π

∗
n)

for M∗ such that
L∗

2
< u∗(π∗

i) < 2L∗

for all i, 1 ≤ i ≤ n, by using the same argument above for instance M .

Solve instance M∗. Recall that each resource in R∗ has the form of z·L/α2 with z ∈ N

and α ≤ z ≤ α2. Hence, we can encode the information on which bundle is assigned

to the agents as a vector w = (wα, . . . , wα2), where wz is the number of resources that

have a value of z · L/α2. The value of a bundle encoded by a vector w is given by

u∗(w) =
α2

∑

z=α

wk · z ·
L

α2
.

Note that there always exists an optimal solution in which each agent owns a bundle of

value between L∗/2 and 2L∗. Therefore, in order to find an optimal allocation for M∗,

we will restrict our searching to the set of vectors w that satisfy this property. Let W

be a set of such vectors w. Since each vector w contains at most 2α resources, it is easy

to see that ‖W‖ is bounded by a constant. The following integer program represents

the instance M∗ precisely.

max
∏

w∈W
{u∗(w)}µw

subject to
∑

w∈W
µw = n

∑

w∈W
µw · wz = nz for z = α, . . . , α2

µw > 0 for all w ∈ W,

where µw denotes the number of agents owning the bundle w and nz denotes the number

of resources in R∗ whose value equals z · (L/α2).

The first constraint of the integer program above ensures that the number of agents is

exactly n while the second one makes sure that all resources are assigned completely to

the agents. Note that both the number of variables and the number of constraints are

constant and thus the integer program above can be solved in polynomial time by using

Lenstra’s algorithm [Len83].

49

Chapter 3 Social Welfare Maximization Problems

Turning to the last stage of the algorithm: we need to prove that given an instance M ,

one can find in polynomial time an allocation π′ for M such that

swN (π′) > (1− ε)OPT

Assume that π∗ = (π∗
1, . . . , π

∗
n) is an optimal allocation obtained by solving exactly M∗.

We will construct in polynomial time an allocation π′ = (π′
1, . . . , π

′
n) for M from π∗ such

that

swN (π′) >

(

1−
5

α

)

· swN (π∗). (3.6)

Indeed, for every bundle π∗
i , we replace all the big resources r∗j by the corresponding

resources rj and remove all the small resources. Denote by mi the number of small

resources in π∗
i . We then add the resources in R, each of value at most L/α, into π∗

i

until the total value of the added resources exceeds (mi − 2)L/α. This step is always

completed, since the fact that the following holds

n
∑

i=1

(mi − 1) ·
L

α
≤ S − n ·

L

α
≤ u(T).

All the remaining resources (if they exist) can be assigned arbitrarily to the agents. It

is easy to prove that the bundle π′
i obtained from π∗

i satisfies

u(π′
i) ≥

α

α+ 1
· u∗(π∗

i)− 2 ·
L

α
.

Since L ≤ L∗ < 2u∗(π∗
i), we have

u(π′
i) >

(

1−
5

α

)

· u∗(π∗
i). (3.7)

By taking the product of Equation (3.7) for i = 1, . . . , n, and extracting the n root of

both sides, we get Equation (3.6).

Now, we prove that

swN (π∗) >

(

1−
2

α

)

OPT. (3.8)

To do this, we show that there exists a feasible solution π′′ = (π′′
1 , . . . , π

′′
n) for M∗ so

that swN (π′′) > (1− 2/α)OPT . Let π = (π1, . . . , πn) be an optimal solution for M ,

then OPT = swN (π). For every bundle πi, we replace the resources rj that have a

value greater than L/α by r∗j and denote by si the total value of all remaining resources,

collected in set T ∩πi. Note that
∑n

i=1 si = u(T). One can find easily n integers ti such

50

3.3 Our Results

that ti ≥ si − (L/α) and
∑n

i=1 ti = S. We then remove all resources, each of value at

most L/α, and add ti · (α/L) resources of value L/α each. The new bundle π′′
i (obtained by

modifying πi) must satisfy u∗(π′′
i) ≥ u(πi)− (L/α). Since L < 2 · u(πi), it follows that

u∗(π′′
i) >

(

1−
2

α

)

· u(πi). (3.9)

Again, by taking the product of Equation(3.9) for i = 1, . . . , n, and extracting the n

root of both sides, we get the following equation: swN (π′′) > (1− 2/α) · swN (π). Note

that swN (π∗) ≥ swN (π′′), since π∗ is an optimal allocation for M∗. Thus, we obtain

Equation (3.8).

Finally, it follows from Equation (3.6) and Equation (3.8) that

swN (π′) >

(

1−
2

α

)

·

(

1−
5

α

)

·OPT

>

(

1−
7

α

)

·OPT.

Choosing α = ⌈7/ε⌉ completes the proof. ❑

An FPTAS for the case of a constant number of agents

We now consider the special case where the number of agents is not part of the input.

For this case, we will design a fully polynomial-time approximation scheme for Max-

ESW, Max-TNSW and Max-ANSW based on the dynamic programming method

that was also used to give an FPTAS for a variety of scheduling problems (see [HS76]

and [Sah76]). This will improve the results stated in Theorem 3.5 and Theorem 3.6.

Theorem 3.8 Max-ESW with additive utilities admits an FPTAS for any fixed num-

ber of agents.

Proof. Let M = (A,R,U) be a problem instance where the number of agents n is

bounded by a constant. As a shorthand, we denote by sij = ui(rj) the utility of resource

rj for agent ai for i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ m. Without loss of generality, we assume

all sij to be nonnegative integers.

The proof of this theorem will be divided into two parts. In the first part, we construct

a pseudo-polynomial time algorithm for Max-ESW that runs in time O(mBn), where

51

Chapter 3 Social Welfare Maximization Problems

B = max1≤i≤n ui(R). We then prove in the second part that this algorithm yields a

fully polynomial-time approximation scheme for our problem.

Let T = (~e1, . . . , ~en) be a canonical basis of the vector space Rn, where ~ei denotes the

vector with a 1 in the i-th coordinate and 0’s elsewhere. Now, consider Algorithm 2.

We denote by Vj the set of all possible assignments of the first j resources to agents,

where each assignment is encoded by an n-dimensional vector.

Algorithm 2 A pseudo-polynomial time algorithm for Max-ESW

1: V0 := {~0};
2: for j := 1 to m do
3: Vj := ∅;
4: for each ~v ∈ Vj−1 do
5: Vj := Vj ∪ {~v + sij · ~ei | i = 1, . . . , n};
6: end for
7: end for
8: return Vector ~v ∈ Vm such that the product of its coordinates is maximal;

More precisely, at step j of the loop in line 2 of Algorithm 2, every single vector ~v ∈ Vj−1,

which was created in the step j − 1, will generate n vectors in Vj . It is easy to see that

the number of vectors created for Vj will be n · ‖Vj−1‖ and thus increases exponentially.

However, the size of every set Vj , 1 ≤ j ≤ m, is bounded by O(Bn), since the coordinates

of all vectors in Vj are integers not exceeding B. Hence, the running time of Algorithm 2

is O(m
∑m

k=1 ‖Vk‖) = O(mBn), and thus it is a pseudo-polynomial time algorithm.

Now, coming to the second part of the proof, we make a small modification to the

above pseudo-polynomial time algorithm in order to get an FPTAS. In more detail, we

will remove some unnecessary vectors from Vj once they have been created. This will

help to keep the number of vectors as low as possible. Of course, that may perhaps

not return the exact optimal solutions but it will still give good approximations. A

natural question is which vectors in Vj should be removed? First, we need to define an

appropriate notion of equivalence of two n-dimensional vectors.

Let ε be any fixed positive number such that 0 < ε < 1 and let α be a positive number

depending on ε and m as follows:

α = 1 +
ε

2m
.

Let K = ⌈logαB⌉ and Lk = [αp−1, αp] for each p, 1 ≤ p ≤ K. We define an equivalence

relation ∼ on the set Vj as follows. Any two vectors ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn)

52

3.3 Our Results

are equivalent, denoted by ~x ∼ ~y, if for every ℓ, 1 ≤ ℓ ≤ n, xℓ = yℓ = 0 or xℓ, yℓ ∈ Lp

for some p. Obviously, this relation is reflexive, symmetric, and transitive, and thus

it is an equivalence relation. Moreover, under this relation, Vj can be partitioned into

equivalence classes, i.e., any two vectors from the same class are equivalent with respect

to ∼. We claim that if ~x ∼ ~y then

1

α
· yℓ ≤ xℓ ≤ α · yℓ or

1

α
· xℓ ≤ yℓ ≤ α · xℓ (3.10)

for all ℓ, 1 ≤ ℓ ≤ n. Indeed, the statement is obviously true if xℓ = yℓ = 0. Now,

consider the case where xℓ, yℓ ∈ Lp for some p, that is, αp−1 ≤ xℓ, yℓ ≤ αp. In this case

we have
xℓ
yℓ

≥
αp−1

αp
=

1

α
and

xℓ
yℓ

≤
αp

αp−1
= α.

We are now ready to modify Algorithm 2 to obtain an FPTAS for the problem Max-

ESW. We will do this by adding one more procedure, called Reduce(Vj), to Algo-

rithm 2. The purpose of Reduce(Vj) is to reduce each set Vj once it has been created.

More precisely, the set of vectors Vj is divided into equivalence classes according to the

relation ∼ and then this procedure removes some vectors such that each class contains

only one vector. The result is Algorithm 3.

Algorithm 3 An FPTAS for Max-ESW

1: V ∗
0 := {~0};

2: for j := 1 to m do
3: Vj := ∅;
4: for each ~v∗ ∈ V ∗

j−1 do
5: Vj := Vj ∪ {~v∗ + sij · ~ei | i = 1, . . . , n};
6: end for
7: V ∗

j :=Reduce(Vj);
8: end for
9: return Vector ~v∗ ∈ V ∗

m such that the product of its coordinates is maximal;

In Algorithm 3, we do the same steps as in Algorithm 2, but this time the set of vectors

Vj will be created from V ∗
j−1 rather than from Vj−1 and then is modified by the procedure

Reduce applied to Vj to get the reduced set V ∗
j . Note that the number of vectors in

V ∗
j is always bounded by O(Kn).

Now, we show the relationship between the two sets Vj and V ∗
j for any j, 1 ≤ j ≤ m.

We will prove by induction on j that for every vector ~v = (v1, . . . , vn) ∈ Vj , there always

exists a vector ~v∗ = (v∗1, . . . , v
∗
n) ∈ V ∗

j such that

53

Chapter 3 Social Welfare Maximization Problems

v∗i ≥
1

αj
· vi

for all i, 1 ≤ i ≤ n.

If j = 1, it is easy to see that V ∗
1 = V1, hence the statement is obviously true. To prove

the statement for every j, assume that the statement is true for j − 1. Consider the

set Vj and an arbitrary vector ~v = (v1, . . . , vn) of Vj . This vector ~v must be created

in line 5 of Algorithm 2 from some vector ~w = (w1, . . . , wn) of the set Vj−1. Without

loss of generality, we assume that ~v has the form of (w1 + s1j , w2, . . . , wn) (note that

v1 = w1 + s1j and vi = wi for all i, 2 ≤ i ≤ n). Using the induction hypothesis above,

there exists some vector ~w∗ = (w∗
1, . . . , w

∗
n) in V ∗

j−1 such that

w∗
i ≥

1

αj−1
· wi

for all i, 1 ≤ i ≤ n. On the other hand, note that ~w∗ + s1j · ~e1 = (w∗
1 + s1j , w

∗
2, . . . , w

∗
n)

will also be created for V ∗
j in line 5 of Algorithm 3, but it may be removed after line 7.

However, there is another vector ~v∗ = (v∗1, . . . , v
∗
n) ∈ V ∗

j such that ~v∗ ∼ (~w∗ + s1j · ~e1).

This yields

v∗1 ≥
1

α
· (w∗

1 + s1j) ≥
1

αj
· w1 +

1

α
· s1j ≥

1

αj
· (w1 + s1j) =

1

αj
· v1,

and for i, 2 ≤ i ≤ n, if w∗
i 6= 0, we have

v∗i ≥
1

α
· w∗

i ≥
1

αj
· wi =

1

αj
· vi.

We now assume that Algorithm 2 returns a vector ~v = (v1, . . . , vn) ∈ Vm such that

min{v1, . . . , vn} = OPT is maximal. Then, there must be a vector ~v∗ = (v∗1, . . . , v
∗
n) ∈

V ∗
m such that

v∗i ≥
1

αm
· vi

for all i, 1 ≤ i ≤ n. This implies that

min{v∗1, . . . , v
∗
n} ≥ min

{ v1
αm

, . . . ,
vn
αm

}

=
1

αm
min{v1, . . . , vn} =

1

αm
OPT .

Moreover, we have

αm =
(

1 +
ε

2m

)m
≤ e

ε/2 ≤ 1 + ε.

54

3.3 Our Results

The first inequality follows from the known inequality (1+ x/z)z ≤ ex for all z ≥ 1. The

second inequality can be proven easily as follows. Consider the function f(x) = ex−1−2x

on the domain [0, 1]. The derivative f ′(x) = 0 if and only if x = ln 2. Therefore, we

have

max
x∈[0,1]

f(x) = max{f(0), f(1), f(ln 2)} = f(0) = 0.

It follows that

min{v∗1, . . . , v
∗
n} ≥

1

1 + ε
OPT > (1− ε)OPT .

We next prove that Algorithm 3 has a running time that is polynomial in 1/ε and

|M |, where |M | denotes the size of M in some natural encoding. Indeed, the loop in

Algorithm 3 needs m steps. At step j, the set Vj is created from V ∗
j−1 and this takes time

n ·‖V ∗
j−1‖ ∈ O(n ·Kn) while the procedure Reduce(Vj) runs in time ‖Vj‖

2 ∈ O(n2K2n).

The overall time complexity of Algorithm 3 is in O(mK2n), since n is constant. Note

further that

K = ⌈logαB⌉ =

⌈

lnB

lnα

⌉

=

lnB

ln
(

1 +
ε

2m

)

<

⌈(

1 +
2m

ε

)

lnB

⌉

.

The above inequality can be proved as follows. Consider the function f(a) = ln a−1+1/a

that is continuous and increasing on the interval (1,∞) as f ′(a) = 1/a − 1/a2 > 0 for all

a > 1. Hence, we have f(a) > f(1) = 0 for all a > 1. By choosing a = α, the inequality

follows.

Furthermore, note that |M | ≥ logB = (log e)(lnB). Thus, we have

K ≤

(

1 +
2m

ε

)

|M |

log e
.

This completes the proof. ❑

By changing slightly the parameter α, the method above can be applied well to derive

an FPTAS for both Max-TNSW and Max-ANSW for the case of bounded number of

agents. This is the best result we can obtain for this case.

Theorem 3.9 Max-TNSW with the additive form admits an FPTAS when the number

of agents is fixed.

55

Chapter 3 Social Welfare Maximization Problems

Proof. We use again the two algorithms described in the proof of Theorem 3.8. Every

setting is unchanged except for choosing α = 1+ε/2nm. We now assume that Algorithm 2

returns a vector ~v = (v1, . . . , vn) ∈ Vm such that the product
∏n

i=1 vi = OPT is maximal.

Then, there must be a vector ~v∗ = (v∗1, . . . , v
∗
n) ∈ V ∗

m such that

v∗i ≥
1

αm
· vi

for all i, 1 ≤ i ≤ n. This implies that

n
∏

i=1

v∗i ≥
1

αnm

n
∏

i=1

vi =
1

αnm
OPT .

Moreover, we have

αnm =
(

1 +
ε

2nm

)nm
≤ e

ε/2 ≤ 1 + ε,

and finally,
n
∏

i=1

v∗i ≥
1

1 + ε
OPT > (1− ε)OPT .

❑

Theorem 3.10 Max-ANSW with the additive form admits an FPTAS when the num-

ber of agents is fixed.

Proof. Choose α = 1 + ε/2m, everything else is similar to the proof of Theorem 3.8

and of Theorem 3.9. ❑

An approximation algorithm for Max-TNSW and Max-ANSW in the general case

We now present a fast greedy approximation algorithm for bothMax-TNSW andMax-

ANSW. Our approach is based upon matching techniques for finding maximum match-

ings in certain classes of weighted bipartite graphs. Recall that a maximum matching

(also known as maximum cardinality matching) is a matching with a maximum number

of edges. For the weighted graphs, a maximum weighted maximum matching (MWMM

for short) is a maximum matching such that the sum of the weights of the edges in the

matching is maximum. It is shown that a problem of finding a MWMM on weighted

56

3.3 Our Results

bipartite graphs can be solved in polynomial time (see [MN99]). A variant of this prob-

lem, which is defined below, is to find a maximum matching that maximizes the product

of the weights of the edges in the matching.

Maximum Product Weighted Matching (MPWM)

Input: A weighted bipartite graph G = (X ∪Y,E) and a weight function w : E →

R+.

Output: A maximum matching M ⊆ E that maximizes
∏

e∈M w(e).

In the following we will prove that this variant can be also solved in polynomial time.

Lemma 3.1 Given a weighted bipartite graph G, a MPWM of G can be found in

polynomial time.

Proof. We may assume that G is a complete bipartite graph, since if there exist two

vertices x, y ∈ V with {x, y} 6∈ E, we can add the edge {x, y} of weight zero to E. More-

over, by multiplying every weight w(e) by a large enough number, it suffices to consider

the case when w(e) ∈ R≥1 ∪ {0}. The basic idea is to transform the given MPWM

instance into an instance of the problem of finding a maximum weighted maximum

matching, which can be solved in polynomial time.

The weight function w′ : E → R is defined as follows:

w′(ei) =

logw(ei) if w(ei) 6= 0

−z log∆ otherwise,

where ∆ = maxei∈E w(ei) and z = min{‖X‖, ‖Y ‖}. Without loss of generality, we can

assume that M = {e1, . . . , ez} is a maximum matching of G with weight function w′ so

that
∑z

i=1w
′(ei) is maximal. We now prove that M is exactly a matching of G that

maximizes
∏z

i=1w(ei). It is easy to see that
∑z

i=1w
′(ei) ≤ 0 if and only if there exists

an edge ei ∈ M with negative weight w′(ei) = −z log∆, i.e., w(ei) = 0. In this case, for

every maximum matching M of G, the product of the edge weights in M is zero with

respect to the weight function w. Now suppose that w(ei) > 0 for all i ∈ {1, . . . , z}.

Assume that there exists another matching M′ = {e′1, . . . , e
′
z} of G such that

z
∏

i=1

w(e′i) >
z
∏

i=1

w(ei).

57

Chapter 3 Social Welfare Maximization Problems

This implies that

log

(

z
∏

i=1

w(e′i)

)

> log

(

z
∏

i=1

w(ei)

)

or, equivalently,
z
∑

i=1

logw(e′i) >
z
∑

i=1

logw(ei),

which in turn is equivalent to

z
∑

i=1

w′(e′i) >
z
∑

i=1

w′(ei).

This is a contradiction. ❑

We are now ready to give an approximation algorithm for both Max-TNSW and Max-

ANSW, assuming that utility functions are additive. Our proof of Theorem 3.11 trans-

forms the problem in to a problem of finding a MPWM in certain bipartite graph.

Particularly, our approach shows that the lower bound results for Max-ANSW and

Max-TNSW in Theorem 3.11 and Theorem 3.12 remain valid even if the additive

utility functions are replaced by the submodular utility functions.

Theorem 3.11 Max-ANSW can be approximated within a factor of 1/(m−n+1) when

agents’ utility functions are in the additive form.

Proof. Let M be an instance of Max-TNSW with n agents A = {a1, . . . , an} and

m resources R = {r1, . . . , rm}, and assume each agent has an individual value for each

resource, say ui(rj). In the following algorithm we denote by µi the bundle assigned to

agent ai, for 1 ≤ i ≤ n.

Obviously, the Algorithm 4 computes an incomplete allocation µ = (µ1, . . . , µn) for

the instance M in polynomial time. For convenience, re-index (if necessary) such that

µi = {ri} for all i, 1 ≤ i ≤ n. We can lift µ to a complete allocation X by allocating

the remaining resources rj , j 6= i, which is not assigned by Algorithm 4 yet, arbitrarily

to agents. Clearly, we have

swN (X) ≥

(

n
∏

i=1

ui(ri)

)1/n

.

58

3.3 Our Results

Algorithm 4 An approximation algorithm for Max-TNSW and Max-ANSW.

1: for i := 1 to n do
2: µi := ∅;
3: end for
4: X := A; Y := R;
5: E := {(ai, rj)| ai ∈ A, rj ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m};
6: G := (X ∪ Y,E);
7: for each edge (ai, rj) ∈ E do
8: w((ai, rj)) := ui(rj);
9: end for

10: Finding a Maximum-Product-Weighted-Matching M of G;
11: for each (ai, rj) ∈ M do
12: µi := {rj};
13: end for
14: return µ = (µ1, . . . , µn);

Let (π1, . . . , πn) be an optimal allocation for M . We will prove that:

(

∏n

i=1
ui(ri)

)1/n
≥

1

(m− n+ 1)

(

∏n

i=1
ui(πi)

)1/n
.

For every bundle πi, denote by r∗i the single resource of biggest value, that is, ui(r
∗
i) =

maxr∈πi ui(r). We have

1

(m− n+ 1)

(

∏n

i=1
ui(πi)

)1/n
≤

1

(m− n+ 1)

(

∏n

i=1
{λi · ui(r

∗
i)}
)1/n

,

where λi is the number of single resources belonging to πi, for all i, 1 ≤ i ≤ n. The

right hand side of the inequality above can be transformed into the following form:

(λ1 · · ·λn)
1/n

(m− n+ 1)

(

∏n

i=1
ui(r

∗
i)
)1/n

≤
(λ1 · · ·λn)

1/n

(m− n+ 1)

(

∏n

i=1
ui(ri)

)1/n
,

since the set of edges {(a1, r
∗
1), . . . , (an, r

∗
n)} is a maximum matching of G, whereas

{(a1, r1), . . . , (an, rn)} is a matching of G with maximum product of edge weights.

Finally, note that
∑n

i=1 λi = m, and by the well-known arithmetic-geometric mean

inequality, we have

(λ1 · · ·λn)
1/n

m− n+ 1
≤

λ1 + · · ·+ λn

n · (m− n+ 1)
=

m

n · (m− n+ 1)
≤ 1.

The last inequality above follows from the fact that n ≤ m. ❑

59

Chapter 3 Social Welfare Maximization Problems

By applying the Algorithm 4 again, we can show the similar result for Max-TNSW.

Theorem 3.12 Max-TNSW with the additive form can be approximated to a factor

of 1/(m−n+1)n.

A special case with n = m

Although the problem of maximizing Nash social welfare is computationally hard in

general for the additive form, there are some interesting naturally restricted instances

where it is computationally easy. Here we consider a restricted version of this problem

where there are as many agents as resources. We present an exact polynomial-time algo-

rithm for Max-TNSW and Max-ANSW by converting these problems to the problem

of finding a maximum matching in some complete bipartite graph. In fact, the results

can be extended easily to the general case of the k-additive form for any fixed k ≥ 1.

Theorem 3.13 For additive utilities, Max-TNSW and Max-ANSW can be solved

exactly in polynomial time when the number of agents and the number of resources are

the same.

Proof. It is important to note that each of the agent will get only one single re-

source, as otherwise both the total and average Nash social welfare would be zero. Let

M = (A,R,U) be an instance of the problems Max-TNSW and Max-ANSW. An op-

timal allocation π for M will correspond exactly to a Maximum-Product-Weighted-

MatchingM of a suitable graph G that is constructed fromM . Hence, such an optimal

allocation π could be found in polynomial time by using Algorithm 4. ❑

3.4 Conclusion and Future Work

In this chapter, we have studied several typical social welfare maximization problems

raising in the field of multiagent resources allocation. The results obtained in this

chapter improve our theoretical understanding of the approximability of these problems,

both in terms of upper and lower bounds (see Table 3.5 for a summary of the results).

For the bundle form and the 3-additive form, we have shown that, unless P = NP,

there is no hope for finding polynomial approximation algorithms to within any factor

60

3.4 Conclusion and Future Work

for Max-ESW, Max-TNSW and Max-ANSW. In addition, we have established the

constant hardness results for the problem of maximizing Nash social welfare in the

additive form. In terms of approximability, we have investigated scenarios where agents

use additive utility functions to present their preferences. We have designed a fast

greedy approximation algorithm for both Max-TNSW and Max-ANSW. Note that

this result even holds for the case of submodular utility functions. Additionally, we have

achieved a fully polynomial-time approximation scheme for Max-ESW, Max-TNSW

and Max-ANSW under the assumption that the number of agents is bounded by a

constant. This assumption is actually very natural (it is more likely that we will have

to share a huge number of resources among a small set of agents than vice versa), so

this almost comes down to a FPTAS result. Regarding the case where the number of

agents is not bounded, we have shown that Max-ANSW admits a PTAS if all agents

have the same utility functions.

For the future work, a challenging open problem is to devise a (constructive) constant

approximation algorithm for Max-ESW with respect to the additive form. Note that

a (1/4)-approximation algorithm for this problem presented in [AFS12] does not provide

the way to find the appropriate solution in polynomial time. Another interesting ques-

tion is for the problem Max-ANSW: how to narrow the gap between the approximation

ratio of 1/(m−n+1) presented here and the factor 2
√
2/3 hardness result. The same open

question is applied to Max-TNSW. Finally, it would be also interesting to improve a

PTAS for Max-TNSW with an unbounded number of agents having the same additive

utility functions.

61

Chapter 3 Social Welfare Maximization Problems

Table 3.5: New results for social welfare optimization problems with respect to the bun-
dle form and the k-additive form.

Inapproximability

Social Welfare Bundle Reference k-Additive Reference

Max-USW mε−1/2 [LOS99] (21/22) + ε, k ≥ 2 Pro. 3.1

Max-ESW any factor Thm. 3.1
any factor, k ≥ 3 Thm. 3.4

(1/2) + ε, k = 1 [BD05]

Max-TNSW any factor Thm. 3.1
any factor, k ≥ 3 Thm. 3.4

(8/9) + ε, k ∈ {1, 2} Thm. 3.2

Max-ANSW any factor Thm. 3.1
any factor, k ≥ 3 Thm. 3.4
(

2
√
2/3
)

+ ε, k ∈ {1, 2} Thm. 3.3

Approximability (additive form)

Social Welfare general Ref. n = const. Ref. id. agent Ref.

Max-ESW 1/
√
n log3 n [AS10] FPTAS Thm. 3.8 PTAS [Woe97]

Max-TNSW 1/(m−n+1)n Thm. 3.12 FPTAS Thm. 3.5 open – –

Max-ANSW 1/m−n+1 Thm. 3.11 FPTAS Thm. 3.10 PTAS Thm. 3.7

Exact polynomial algorithm (additive form)

Social Welfare m = n Reference

Max-ESW poly. time [Gol05]

Max-TNSW poly. time Thm. 3.13

Max-ANSW poly. time Thm. 3.13

62

Chapter 4

Computing Minimum Envy Allocation

In this chapter, we study the problem of fairly allocating a set of goods among several

agents that are assumed to have additive utility functions over bundles of goods. As

a most prominent interpretation of fairness, we focus on envy-freeness, which means

that no agent wants to swap her bundle of goods in an allocation with another agent.

Much of the work so far has been devoted to envy-freeness in the setting where one

divisible good is to be divided among the agents (the so-called cake-cutting problem,

see [BT96, RW98]). Here, we focus on computing the envy-free allocation of indivisible

goods. Let π = (π1, . . . , πn) be an allocation amongst n agents, where πi is the bundle

assigned to agent ai, and let ui be a utility function of agent ai, 1 ≤ i ≤ n, an envy-free

allocation is defined as follows:

Definition 4.1 An allocation π is said to be envy-free if and only if for any agent ai,

the following inequality holds for any agent aj:

ui(πi) ≥ ui(πj)

Example 4.1 Consider an instance with 3 agents and 7 single goods, and agents’ utility

functions have additive form which are given in Table 4.1. The numbers in boldface show

an allocation of goods that is envy-free: agent a1 gets the bundle {r4, r6}, agent a2 gets

the bundle {r1, r7} and agent a3 gets the last three goods {r2, r3, r5}.

In fact, while envy-free allocations of a divisible good always exist (and can even be

guaranteed by a finite bounded procedure [BT95]), an envy-free allocation of indivisi-

ble goods may not exist in general (see Example 4.2). Therefore, we seek to compute

allocations that ensure envy to be as small as possible. There are several ways to de-

fine a measure of envy for a given allocation. Chevaleyre et al. [CEEM07] proposed a

63

Chapter 4 Computing Minimum Envy Allocation

Table 4.1: Utilities of the agents for Example 4.1.

Resources Agent a1 Agent a2 Agent a3

r1 0 5 3
r2 3 1 2
r3 3 1 4
r4 5 2 0
r5 2 4 3
r6 4 3 5
r7 2 4 5

framework for defining the degree of envy of an allocation based on the degree of envy

among individual agents. Agent ai’s envy regarding agent aj ’s bundle is determined by

ui(πj)−ui(πi), where ui is ai’s utility function, and ai’s envy with respect to allocation

π is defined by using the aggregation functions max (maxj 6=i{ui(πj)− ui(πi)}) and sum

(
∑

j 6=i(ui(πj)−ui(πi))). Finally, the envy of the allocation π is aggregated from the envy

of individual agents via the aggregation functions max and sum. Considering the opti-

mization problems based on this measure of envy, a drawback of this approach is that,

unless P = NP, there are no approximation algorithms for them, since the objective

function might be zero (see the work of Lipton et al. [LMMS04]). We circumvent this by

defining similar notions of degree of envy based on max and product (
∏

j 6=i
ui(πj)/ui(πi)),

and study approximability of the corresponding optimization problems. The results

presented in this chapter will appear in [NR].

Related work: A number of papers in the literature has investigated the computation

of envy-free allocations for indivisible goods. These papers focus on either centralized

or distributed protocols, or take into account the way in which the agents’ preferences

are expressed: cardinal or ordinal. Chevaleyre et al. [CEEM07] studied a distributed

protocol in which agents negotiate on the exchange of goods to reach an allocation that

is envy-free or has minimal envy. Regarding centralized protocols, Bouveret, Endriss,

and Lang [BEL10] dealt with the problem where the agents’ preferences are represented

ordinally by using so-called SCI-nets, while Bouveret and Lang [BL08] considered the

logical aspects of representation and related complexity issues. Lipton et al. [LMMS04]

addressed the problem of computing allocations with minimal envy when agents have

numerical additive preferences, which corresponds exactly to our problem of minimizing

ermax,max (which will be defined in Section 4.1). Among other results, they provided

a PTAS for the case of agents with identical utility functions and mentioned that one

64

4.1 Degree of Envy

can obtain even a fully polynomial-time approximation scheme (FPTAS) for this case

if the number of agents is fixed, thus extending the corresponding result of Bazgan

et al. [BST98] for the problem Subset-Sums Ratio: given a set S = {c1, . . . , cn}

of positive integers, the goal is to find a partition of S into two subsets S1, S2 with
∑

ci∈S1
ci ≥

∑

ci∈S2
ci such that the ratio

∑

ci∈S1
ci/

∑

ci∈S2
ci is minimized. However, their

method that gave an FPTAS for the problem cannot be applied for the case of agents

with different preferences.

4.1 Degree of Envy

Let A = {a1, . . . , an} be a set of agents and R = {r1, . . . , rm} be a set of indivisible

goods. Each agent ai has an additive utility function ui : 2R → Q+, i.e., for every

subset B ⊆ R, ui(B) =
∑

rj∈B ui(rj). An allocation is a partition π of R into n subsets

(π1, . . . , πn), where πi is assigned to agent ai. We now adopt the approach of Chevaleyre

et al. [CEEM07], who introduced the notion of degree of envy of society. Their definition

proceeds in three stages by first defining envy between any two agents, then envy of

any agent with respect to all other agents, and finally envy of society. With respect to

a given allocation π = (π1, . . . , πn), the three stages of the process are as follows:

• Stage 1 (envy between any two agents): For each i and j 6= i, agent ai’s

envy with respect to agent aj is defined as the ratio between ai’s utility for the

bundle assigned to aj and ai’s utility for the bundle assigned to herself:

er(i, j) =
ui(πj)

ui(πi)
.

• Stage 2 (degree of envy of any agent): Here we measure how envious any

agent ai is with respect to anyone else, where we consider two aggregation func-

tions, product and max:

erpro(i) =
∏

j 6=i
er(i, j) and ermax(i) = maxj 6=ier(i, j).

• Stage 3 (degree of envy of society): Based on the degree of envy of individual

agents, we define the degree of envy of society for allocation π, by again considering

the two aggregation functions max and product. While the max function focuses

on the most envious agent of society, the product measures envy of society as a

65

Chapter 4 Computing Minimum Envy Allocation

whole:

erpro,opt(π) =
∏n

i=1
eropt(i) and ermax,opt(π) = maxni=1er

opt(i),

where opt ∈ {max, pro}.

Here we only consider these two operators, max and product, for aggregating de-

grees of envy of individual agents. However, there are also other potential alterna-

tives for the aggregation of individual preferences, e.g., using the leximin ordering (see

Moulin [Mou88]).

Note that one of the two measures of envy of society given by Lipton et al. [LMMS04]

corresponds to ermax,max(π).

Now, given these notions of the degree of envy of society, we define the following opti-

mization problems, where we let opt1, opt2 ∈ {max, pro}.

Minimum Envy (opt1, opt2)

Input: A set of m indivisible goods and a set of n agents, each having an additive

utility function over the bundles of goods.

Output: An allocation π that minimizes max{1, eropt1,opt2(π)}.

Note that we minimize max{1, eropt1,opt2(π)} rather than eropt1,opt2(π) in order to make

the problem fit with the common definition of objective functions in optimization prob-

lems so that approximation algorithms can be applied to it and analyzed in a standard

manner.

Example 4.2 Consider an instance with three agents and six single goods, where each

agent has an additive utility function which is given in Table 4.2.

Table 4.2: Utilities of the agents for Example 4.2.

Resources Agent a1 Agent a2 Agent a3

r1 1 5 5
r2 2 5 4
r3 0 0 1
r4 3 1 6
r5 4 1 4
r6 3 0 2

66

4.2 Our Results

There is no envy-free allocation for this instance. The numbers in boldface show an

allocation whose envy is minimized: π = ({r5, r6}, {r1}, {r2, r3, r4}) with

ermax,max(π) =

{

1

7
,
5

7
,
1

5
,
6

5
,
6

11
,
5

11

}

=
6

5
.

In comparison with other notions of fairness, it is worth noting that allocations with

minimum envy do not always optimize either egalitarian social welfare (the utility of the

agent who is worst off) or social welfare by Nash (the product of the individual agent

utilities), and vice versa. For instance, the allocation π shown in Example 4.2 has the

Nash product 7 · 5 · 11 = 385 and thus does not maximize Nash social welfare. Also, it

is not an optimal allocation with respect to the egalitarian social welfare. Conversely,

the allocation π′ = ({r5, r6}, {r1, r2}, {r3, r4}) maximizes both the egalitarian and Nash

social welfare, but its envy ermax,max(π′) = 9/7 is not minimal.

4.2 Our Results

4.2.1 Approximation Schemes

In this section, we prove that there is a fully polynomial time approximation scheme

(FPTAS) for the problem of minimizing envy, for any pair (opt1, opt2), where opti ∈

{max, pro}, and for a bounded number of agents. The technique is again similar to

that used in designing an FPTAS for the problem of maximizing social welfare in the

previous chapter.

Let M = (A,R) be an instance of the problem in which each agent ai, 1 ≤ i ≤ n, has

an additive utility function over the power set 2R. We denote by sij the value of good

rj for agent ai. Without loss of generality, we assume that sij ∈ N for all i and j. In

Algorithm 5 below, Vj denotes the set of all possible allocations of Rj = {r1, . . . , rj},

which assigns the first j goods in R to agents. Each allocation in Vj is represented

by a vector ~v = (vip) in which vip is an evaluation of ap’s bundle by agent ai for all

i, p ∈ {1, . . . , n}. The envy of the allocation corresponding to a vector ~v ∈ Vj is denoted

by eropt1,opt2(~v). We denote by ~µk,i, 1 ≤ k, i ≤ n, a vector of dimension n2 with a

1 in the coordinate tki and a 0 everywhere else. Note that there are totally n2 such

vectors.

67

Chapter 4 Computing Minimum Envy Allocation

Algorithm 5 A pseudo-polynomial time algorithm for Minimum Envy (opt1, opt2)

1: V0 := {~0};
2: for j := 1 to m do
3: Vj := ∅;
4: for each ~v ∈ Vj−1 do
5: for i := 1 to n do
6: Vj := Vj ∪ {~v +

∑n
k=1 skj · ~µk,i}

7: end for
8: end for
9: end for

10: return vector ~v ∈ Vm that minimizes eropt1,opt2(~v).

LetB = max1≤i≤n
∑m

j=1 sij . By using the same argument as in the proof of Theorem 3.8,

one can show that the running time of Algorithm 5 is O(mBn2

) (note that each vector

in the set Vj has dimension of n2) and thus it is a pseudo-polynomial time algorithm.

Let ε be any fixed number such that 0 < ε < 1, and

α = 1 +
ε

4mδ

where δ depends on n and will be determined later. Let K = ⌈logαB⌉ and Lk =

[αk−1, αk], where 1 ≤ k ≤ K. We define the equivalence relation ∼ on the set Vj as

same as before and we also have that if x ∼ y then

1

α
· yℓ ≤ xℓ ≤ α · yℓ and

1

α
· xℓ ≤ yℓ ≤ α · xℓ (4.1)

for all ℓ, 1 ≤ ℓ ≤ n2.

Algorithm 6 An FPTAS for Minimum Envy (opt1, opt2)

1: V ∗
0 := {~0};

2: for j := 1 to m do
3: Vj := ∅;
4: for each ~v∗ ∈ V ∗

j−1 do
5: for i := 1 to n do
6: Vj := V ∗

j ∪ { ~v∗ +
∑n

k=1 skj · ~µk,i}
7: end for
8: end for
9: V ∗

j := Reduce(Vj)
10: end for
11: return vector ~v∗ ∈ V ∗

m that minimizes eropt1,opt2(~v∗).

68

4.2 Our Results

In the following, we will show the relationship between the two sets Vj and V ∗
j .

Lemma 4.1 Let Vj and V ∗
j be the two sets of vectors that have been created by Algo-

rithms 5 and 6, respectively. For each vector ~v = (vip) ∈ Vj, there always exists a vector

~v∗ = (v∗ip) ∈ V ∗
j such that for all i 6= p, 1 ≤ i, p ≤ n:

v∗ii ≥
1

αj
· vii and v∗ip ≤ αj · vip.

Proof. The proof is by induction on j. The case with j = 1 is true by Equation (4.1)

and the fact that V ∗
1 = V1. Assume that the statement is true for j − 1. Consider an

arbitrary vector ~v = (vip) ∈ Vj . This vector ~v must be created in line 6 of Algorithm 5

from some vector ~w = (wip) of the set Vj−1. Without loss of generality, we assume that

~v has the form

(w11 + s1j , w12, . . . , w1n, . . . , wn1 + snj , wn2, . . . , wnn),

where vi1 = wi1 + sij for i ∈ {1, . . . , n} and vip = wip for p 6= 1. Using the inductive

assumption above, there exists some vector ~w∗ = (w∗
ip) ∈ V ∗

j−1 such that

w∗
ii ≥

1

αj−1
· wii and w∗

ip ≤ αj−1 · wip (i 6= p) (4.2)

for all i, p ∈ {1, . . . , n}. On the other hand, note that the vector

(w∗
11 + s1j , w

∗
12, . . . , w1n, . . . , w

∗
n1 + snj , w

∗
n2, . . . , w

∗
nn)

will also be created for Vj but may be removed by the procedure Reduce(Vj), which

outputs V ∗
j . However, there must be another vector ~v∗ = (v∗ip) ∈ V ∗

j such that ~v∗ ∼ ~w∗.

This yields

v∗11 ≥
1

α
· (w∗

11 + s1j) ≥
1

αj
· w11 +

1

α
· s1j ≥

1

αj
· (w11 + s1j) =

1

αj
· v11.

For i 6= 1, we have

v∗ii ≥
1

α
· w∗

ii ≥
1

αj
· wii =

1

αj
· vii

and

v∗i1 ≤ α · (w∗
i1 + sij) ≤ αj · wi1 + α · sij ≤ αj · (wi1 + sij) = αj · vi1.

69

Chapter 4 Computing Minimum Envy Allocation

For any p 6= 1 and i 6= p, we have

v∗ip ≤ α · w∗
ip ≤ αj · wip = αj · vip.

❑

We are now ready to prove the main result of this section.

Theorem 4.1 For any fixed ε > 0 and any pair (opt1, opt2) with opti ∈ {max, pro},

Algorithm 6 always produces in polynomial time an allocation whose envy is within a

factor of 1 + ε of the optimum.

Proof. Let ~v = (vip) ∈ Vm be a vector returned by Algorithm 5. By Lemma 4.1,

there exists a vector ~v∗ = (v∗ip) ∈ V ∗
m such that

v∗ii ≥
1

αm
· vii and v∗ip ≤ αm · vip (i 6= p)

for all i, p ∈ {1, . . . , n}. Assume Algorithm 6 outputs a vector ~x. By Lemma 4.1 and

the fact that

eropt1,opt2(~v∗) ≥ eropt1,opt2(~x) ≥ eropt1,opt2(~v),

it is easy to see that eropt1,opt2(~x) = ∞ if and only if eropt1,opt2(~v) = ∞. In case

eropt1,opt2(~v) < ∞, we have vii, v
∗
ii 6= 0 for all i, and so

1

v∗ii
≤ αm ·

1

vii

and thus,
v∗ip
v∗ii

≤ α2m ·
vip
vii

(i 6= p)

for all i, p ∈ {1, . . . , n}. By choosing δ appropriately, we can show that for each pair

(opt1, opt2):

max{1, eropt1,opt2(~x)} ≤ (1 + ε)max
{

1, eropt1,opt2(~v)
}

. (4.3)

Indeed, we prove the claim for the four possible cases below. Note that we have

eropt1,opt2(~x) ≤ eropt1,opt2(~v∗).

70

4.2 Our Results

Note that we have already proved the following inequality in the previous chapter:

λ2mδ =
(

1 +
ε

4mδ

)2mδ
≤ e

ε/2 ≤ 1 + ε. (4.4)

Case 1: (opt1, opt2) = (pro, pro). In this case, we have

max{1, erpro,pro(~x)} ≤ max

{

1,
∏n

i=1

∏

p 6=i

v∗ip
v∗ii

}

≤ max

{

1, α2mn(n−1)
∏n

i=1

∏

p 6=i

vip
vii

}

≤ α2mn(n−1)max{1, erpro,pro(~v)}.

Choosing δ = n(n− 1) and applying inequality (4.4), we obtain (4.3).

Case 2: (opt1, opt2) = (max, pro). Here we obtain

max{1, ermax,pro(~x)} ≤ maxni=1

{

1,
∏

p 6=i

v∗ip
v∗ii

}

≤ maxni=1

{

1, α2m(n−1)
∏

p 6=i

vip
vii

}

≤ α2m(n−1)max {1, ermax,pro(~v)} .

Choosing δ = n− 1 and applying inequality (4.4), we again obtain (4.3).

Case 3: (opt1, opt2) = (pro,max). Now we have

max{1, erpro,max(~x)} ≤ max

{

1,
∏n

i=1
maxp 6=i

v∗ip
v∗ii

}

≤ max

{

1, α2m(n−1)
∏n

i=1
maxp 6=i

vip
vii

}

≤ α2m(n−1)max {1, erpro,max(~v)} .

Choosing δ = n− 1 and applying inequality (4.4), we obtain (4.3).

Case 4: (opt1, opt2) = (max,max). Finally, we have

max{1, ermax,max(~x)} ≤ max

{

1,maxni=1maxp 6=i

v∗ip
v∗ii

}

≤ max

{

1, α2mmaxni=1maxp 6=i
vip
vii

}

≤ α2mmax {1, ermax,max(~v)} .

71

Chapter 4 Computing Minimum Envy Allocation

Choosing δ = 1 and applying inequality (4.4), we again obtain (4.3).

Finally, it is again similar to the proof of Theorem 3.8, one can prove that the running

time of Algorithm 6 is polynomial bounded by the input size and 1/ε. This completes

the proof. ❑

4.2.2 Inapproximability Result

In this section we prove that if the number of agents is part of the input, the problem

Minimum Envy (max,max) does not have a polynomial-time approximation scheme

(PTAS). This result can be extended without difficulty to the other cases of (opt1, opt2)

with opti ∈ {max, pro}.

Theorem 4.2 Unless P = NP, the problem Minimum Envy (max,max) is not in

PTAS. In fact, there is no approximation algorithm of factor better than 3/2 for this

problem, unless P = NP.

Proof. The proof is based on a reduction from the (X3C. Let (B,S), where ‖B‖ =

3q and S = {S1 . . . , Sn}, be an instance of X3C. Without of loss generality, we can

assume that n ≥ q. We construct an instance M as follows: There are n agents, each

corresponding to one set Si, 1 ≤ i ≤ n; the set of goods contains 2q + n single goods,

where 3q “real” goods correspond to the 3q elements of B and there are n− q “dummy”

goods. For each i, 1 ≤ i ≤ n, agent ai has utility 1 for each good in Si and utility 0 for

each good in BrSi. Every dummy good has utility 3 for all agents. We also denote by

ui the additive utility function of agent ai.

Suppose that (B,S) is a yes-instance of X3C. Then there exists a set I ⊆ {1, . . . , n},

‖I‖ = q, such that Si ∩ Sj = ∅ for all i, j ∈ I, i 6= j, and
⋃

i∈I Si = B. Hence, we assign

the bundle Si to agent ai for each i ∈ I, and each dummy good to one of the n − q

remaining agents. This allocation has an envy of 1 and thus is optimal.

Conversely, if (B,S) is a no-instance of X3C, we show that any optimal allocation for

M has always envy of at least 3/2. Indeed, let π = (π1, . . . πn) be an optimal allocation

for M , and consider the following two cases for π. First, if there is some agent ai whose

bundle πi contains at least two dummy goods, then there must be another agent ak

owning a bundle πk of value at most 3. This implies that

ermax,max(π) ≥
uk(πi)

uk(πk)
≥ 2

72

4.2 Our Results

and thus the envy of π is at least 2 in this case. Second, consider the case that the n− q

dummy goods are assigned to m − n distinct agents and let ai be one of these. Since

there are at most q − 1 disjoint sets from S1, . . . , Sn, there must be at least one agent

ak who is assigned a bundle πk of value at most 2. Furthermore, the bundle πi of ai has

utility at least 3 for agent ak. Hence,

ermax,max(π) ≥
uk(πi)

uk(πk)
≥

3

2

To sum up, the lower bound of ermax,max(π) is 3/2 if (B,S) is a no-instance of X3C. This

means that an approximation algorithm with a factor better than 3/2 will distinguish

the yes- from the no-instances of X3C in polynomial time, contradicting NP-hardness

of X3C unless P = NP. The proof is completed. ❑

4.2.3 A Restricted Case

We next consider the problem of minimizing the envy in the special case when there

are as many agents as goods. By applying a matching technique, we will show that one

can solve this restricted case in polynomial time. Like the problem of maximizing social

welfare, it is important to note that each agent will get exactly one good, for otherwise

there would be at least one agent owning nothing and thus the envy of the allocation

would be infinite. Hence, one can transfer our optimization problem into a problem of

finding a suitable maximum matching in a weighted bipartite graph. We consider the

following variant of the matching problem Min-Max-Matching.

Min-Max-Matching

Input: A bipartite graph G = (X ∪ Y,E) and a weight function w : E → R+.

Output: A min-max-matching, i.e., a maximum matching M ⊆ E such that

maxe∈M w(e) ≤ maxe∈M′ w(e) for any other maximum matching M′ of G.

Lemma 4.2 Given a weighted bipartite graph G, a min-max-matching of G can be

found in polynomial time.

Proof. Given a weighted bipartite graph G, a min-max-matching of value k can be

found in polynomial time as follows. Let Gk be a subgraph of G that contains only the

73

Chapter 4 Computing Minimum Envy Allocation

edges of weight less than or equal to k. Obviously, G has a min-max-matching of value

k if and only if Gk has a maximum matching. The smallest value of k can be found by

binary search. ❑

Theorem 4.3 For any pair (opt1, opt2) with opti ∈ {max, pro}, an allocation of mini-

mum envy can be found in polynomial time if the number of agents and the number of

goods are the same.

Proof. Let A = {a1, . . . , an} be a set of agents and G = {g1, . . . , gn} be a set of goods,

where we assume that each agent ai has an additive utility function ui over the set of

goods. Consider the following two cases:

Case 1: opt1 = max. We construct a weighted bipartite graph G = (X∪Y,E) in which

X and Y correspond to the set of agents A and the set of goods G, respectively.

The weight w function is defined as

w((ai, gj)) =

maxk 6=j

{

ui(gk)

ui(gj)

}

if opt2 = max

∏

k 6=j

ui(gk)

ui(gj)
if opt2 = pro

It is not difficult to see that the optimal allocation for instance M corresponds ex-

actly to a min-max-matching M of G, which can be solved exactly by Lemma 4.2.

Case 2: opt1 = pro. We construct a weighted bipartite graph G = (X∪Y,E) similarly

as in the case 1, but this time the optimal allocation for instance M corresponds

exactly to a MPMW M of G, which can be solved exactly by Lemma 3.1.

This completes the proof. ❑

Example 4.3 Consider an instance of Minimum Envy (max,max) with three agents

{a1, a2, a3} and three goods {r1, r2, r3}. The utility of each agent on each good is rep-

resented by a weighted complete bipartite graph as in Figure a (left). Figure b (right)

illustrates the graph G equipped with the weight function w and the thick lines show

an optimal allocation for M obtained by using the algorithm described in the proof of

Lemma 4.2.

74

4.3 Conclusions and Future Work

Figure 4.1: An example for solving Minimum Envy (max,max) exactly when m = n.

a1 a2 a3

r1 r2

Figure a.

r3

a1 a2 a3

r1 r2

Figure b.

r3

2

1

1

7

3

3

5

4

0

3
2

3

7 2
3

5
7

3
4

4
3

7
5

∞

4.3 Conclusions and Future Work

We have studied the problem of computing minimum envy allocations of indivisible

goods when agents have additive utilities over bundles of goods. Building on the work

of Lipton et al. [LMMS04] and Chevaleyre et al. [CEEM07], we have analyzed an al-

ternative metric to measure the envy between two agents and the envy of society as

well. Based on these measures, we model the optimization problems of minimizing envy

and study their approximability. Our main result shows that these problems admit

an FPTAS for the case when the number of agents is not part of the input. We have

also provided a hardness of constant-factor approximation result. For the restricted case

when there are as many agents as goods, we have presented a nontrivial polynomial-time

algorithm that computes exact allocations of minimum envy.

As future work, it would be interesting to find an (constant) approximation algorithm for

our optimization problems in the general case. Note that our problem Minimum Envy

(max,max) is closely related to the problemMinimum Makespan on unrelated machine

which is known to be approximable to a factor of 2, by using integer linear programming

(see [LST90]). Therefore, we conjecture that Minimum Envy (max,max) can be also

approximated to within certain constant factor. Regarding the negative results, there

is still room for improving the 3/2-hardness factor obtained in Theorem 4.2.

75

Chapter 4 Computing Minimum Envy Allocation

76

Chapter 5

Truthful Mechanism Design

This chapter concerns with the inapproximabity results for truthful mechanisms for the

problem of maximizing Nash social welfare and the problem of minimizing the envy

which have been defined in the previous chapters.

5.1 Framework and Basic Definitions

In the framework of resource allocation, we usually make the assumption that the agents’

utility functions are public information and efficient (exact or approximate) algorithms

could be found based on this information. However, this convention cannot be applied

well in certain situations where the agents’ preferences or utilities over the resources

are private and some agents might possibly misrepresent them in order to get better

bundles. Mechanism design is a subfield of economics and game theory that answers the

question of whether mechanisms can be designed that ensure that optimal allocations

can be produced and all agents can get the maximal profit only by declaring their

truthful utility functions.

Formally, Nisan and Ronen [NR99] model this problem as follows. Consider n selfish

agents and m indivisible, nonshareable resources. Each agent ai has a valuation function

vi and this information is known only to that agent herself.1 The mechanism designer

will require each agent ai to report her valuation function and she may provide another

function v′i instead of her truthful one, vi, in order to make the output of the algorithm

beneficial for her. The algorithm will produce autonomously an optimal allocation

based on the information provided by agents. Note that the mechanism design aims at

computing an optimal solution with respect to the agents’ true valuation functions, and

1Note that in this section the term valuation function plays the same role as “utility function” in the
previous sections.

77

Chapter 5 Truthful Mechanism Design

the basic idea is to give to each agent a payment function that gives her an incentive to

report her true valuations.

Definition 5.1 A mechanism M is a pair (f, ~p), where

• f is an allocation algorithm,

• ~p = (p1, . . . , pn) is the vector of payment functions assigned to the agents.

All the valuation functions provided by the agents are collected in a vector ~v =

(v1, . . . , vn), and we denote by f(~v) the optimal allocation output by the algorithm.

Each agent ai is given a payment function pi(~v) and she wishes to maximize her utility

ui(~v) = vi(f(~v))− pi(~v).

Definition 5.2 A mechanism M is said to be truthful if for each agent ai and for each

possible misreported valuation v′i,

vi(f(~v))− pi(~v) ≥ vi(f(v
′
i, ~v−i))− pi(v

′
i, ~v−i),

where ~v−i denotes the vector (v1, . . . , vi−1, vi+1, . . . , vn) and (v′i, ~v−i) denotes the vector

(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

In the last few years, the study of truthful mechanisms has been one of the most in-

teresting subjects, especially in the area of combinatorial auctions. Bikhchandani et

al. [BCL+06] show that one can design efficient truthful mechanisms for the problem

of maximum (utilitarian) social welfare in combinatorial auctions by a so-called VCG

mechanism. Nisan and Ronen [NR99] investigated the design of computable truthful

mechanisms for some combinatorial optimization problems including shortest paths,min-

imum spanning trees, and minimum makespan. Regarding negative results, Bikhchan-

dani et al. [BCL+06] proved that there does not exist any truthful mechanism for the

problem of maximum egalitarian social welfare, even in a restricted case, by taking into

account the weak monotonicity property as a sufficient condition for the truthfulness of

a mechanism.

Definition 5.3 A truthful mechanism M is weakly monotonic if for each vector ~v,

agent ai, and valuation function v′i, we have

vi(f(~v)) + v′i(f(v
′
i, ~v−i)) ≥ v′i(f(~v)) + vi(f(v

′
i, ~v−i)).

78

5.2 Our Results

For minimization problems, the inequality is reverse. The following lemma is due to

Bikhchandani et al. [BCL+06] and shows the relationship between truthfulness and

weak monotonicity of a mechanism.

Lemma 5.1 (Bikhchandani et al. [BCL+06]) Any truthful mechanism must be

weakly monotone.

5.2 Our Results

Using Lemma 5.1, Mu’alem and Schapira [MS07] present lower bound results on truth-

fulness for a number of optimization problems. Specifically, they show that one cannot

have a truthful mechanism that obtains any approximation to the problem of maxi-

mum egalitarian social welfare in resource allocation. In this section, we will study the

question of whether one can design efficiently truthful mechanisms for Max-TNSW,

Max-ANSW and Minimum Envy (max,max). The obtained results have been pub-

lished in [NR13b, NR13a].

Theorem 5.1 There does not exist any truthful mechanism that computes an optimal

allocation for Max-TNSW or for Max-ANSW.

Proof. We give the proof only for Max-TNSW. Consider an instance of Max-

TNSW with two agents {a1, a2} and two resources {r1, r2}. The valuation functions

of the agents are additive and described as follows: v1(r1) = 2, v1(r2) = 1, v2(r1) =

5, v2(r2) = 3. For a contradiction, suppose that there is a truthful mechanism M

computing an optimal allocation for Max-TNSW. It is easy to see that M will return

an allocation in which ri is assigned to ai, for i ∈ {1, 2}. Let v′2(r1) = 2, v′2(r2) = 0.5

be another valuation of agent a2 over the resources. For this valuation function v′2, an

optimal allocation obtained by M is that r2 is assigned to a1 and r1 is assigned to a2.

We the have

3 + 2 = v2(r2) + v′2(r1) < v′2(r2) + v2(r1) = 0.5 + 5.

This contradicts weak monotonicity. The theorem is proved. ❑

Naturally, one would hope to design mechanisms that are truthful and achieve maximum

Nash social welfare at least in an approximate manner. Unfortunately, this is also

impossible due to the following result.

79

Chapter 5 Truthful Mechanism Design

Theorem 5.2 Let 0 < ε < 1. There is no truthful mechanism that can yield an ε-

approximation for Max-TNSW or for Max-ANSW.

Proof. Again, we give the proof only for Max-TNSW. Consider an instance of Max-

TNSW with two agents, A = {a1, a2}, and two resources, R = {r1, r2}. The valuation

functions of the agents are additive and given as follows:

v1(r1) = 2, v1(r2) = ε, v2(r1) = 3−
ε

2
, v2(r2) = 1 +

ε

2
.

It is easily seen that there is an optimal allocation in which ri is assigned to ai, i ∈ {1, 2}.

This allocation will be returned by any ε-approximation mechanism. Let v′2(r1) = 3ε/2,

v′2(r2) = ε2/2 be another valuation of agent a2 of the resources. For this valuation

function u′2, an optimal allocation obtained by an ε-approximation mechanism is that

a1 gets r2 and a2 gets r1. However, it is easy to check that the following is true for any

ε < 1:

1 + 2ε = v2(r2) + v′2(r1) < v′2(r2) + v2(r1) =
ε2

2
+ 3−

ε

2
.

This is again a contradiction to weak monotonicity. The proof is completed. ❑

Lipton et al. [LMMS04] proved that truthful mechanisms for finding exact solutions for

the problem Minimum Envy (max,max) are impossible. In the context of approxima-

tion algorithms, we will give a lower bound for this problem.

Theorem 5.3 No truthful mechanism for Minimum Envy (max,max) can have an

approximation factor of 2− ε for each fixed ε > 0.

Proof. Let M be a truthful mechanism that achieves an approximation factor of

2 − ε for some ε > 0. We consider an instance with two agents, A = {a1, a2}, and

three resources, R = {r1, r2, r3}. All agents have the same additive valuation functions:

vi(rj) = 1 for i ∈ {1, 2} and j ∈ {1, 2, 3}. It is easy to see that one can obtain an optimal

allocation with a value of 2 by assigning two resources to one agent and the remaining

resource to the other agent. Furthermore, M will also output a solution with a value of

2 and, w.l.o.g., we may assume that the bundle {r1, r2} is assigned to a1 and the single

resource r3 belongs to a2.

Let v′1(r1) = v′1(r2) = 1/2, v′1(r3) = 3/2 be another valuation function of agent a1 over

the resources. Note that the new instance has an optimal allocation with a value of 1

when assigning resources r1 and r2 to agent a2 and resource r3 to agent a1, whereas all

80

5.3 Conclusion and Future Work

other allocations have a value of at least 2. Hence, the (2−ε)-approximation mechanism

returns exactly the optimal allocation. We then have

2 + 3/2 = v1(r1, r2) + v′1(r3) > v′1(r1, r2) + v1(r3) = 1 + 1.

This is again a contradiction to weak monotonicity. ❑

5.3 Conclusion and Future Work

In this chapter, we have studied and provided the lower bound results for (deterministic)

truthful mechanisms of three problems: Max-TNSW, Max-ANSW and Minimum

Envy (max,max). For the first two problems, we have shown that there is no truthful

mechanism for finding both exact and approximate solutions. In addition, we have

presented a lower bound of 2 on the approximation factor of truthful mechanisms for

Minimum Envy (max,max). An obvious direction of future work is to design a truthful

mechanisms that can approximate this problem within a certain factor. It would also be

interesting to study truthful randomized mechanism (that is, a probability distribution

over deterministic truthful mechanisms) for both Max-TNSW and Max-ANSW.

81

Chapter 5 Truthful Mechanism Design

82

Chapter 6

Positional Scoring Rules for Multiagent

Resource Allocation

Most of the work so far has been focused on allocating indivisible goods that involves

cardinal preferences of agents over alternative bundles of goods. These preferences are

represented typically in term of utility functions which map alternatives to a suitable

scale. Admittedly, the use of utility functions seems to be technically convenient in

computational practice. However, in many realistic settings eliciting exact utilities of

agents over the bundle of goods that they received is not always easy, especially in

scenarios where monetary payments are not allowed. This chapter is concerned with

the ordinal aspect of preferences where agents express their preferences through binary

relations instead of utility functions.

Division of indivisible goods based on the ordinal preference has been studied in the

sequence of papers [BF00, EF01, HP02, BEF04, BK05, BEL10, BKK12]. Herreiner

and Puppe [HP02] design a deterministic procedure, called descending demand proce-

dure, for allocating indivisible goods. The difficulty of their approach, however, lies in

the assumption that agents should be able to express the linear order preferences over

all bundles of goods, which, in the worst case, requires agents to express an exponen-

tially large input, which must be avoided for computational reasons. Indeed, with only

30 goods, agents would have to rank over more than one billion different bundles of

goods. Bourveret, Endriss and Lang [BEL10] study a model where agents’ preferences

are expressed in term of the so-called SCI-nets. Intuitively, given a linear order ≻ over

single goods, a SCI-net induces an incomplete preference order over bundles which is

consistent with ≻. In particular, Bourveret and coauthors propose the refinements of

envy-freeness, called possibly envy-free and necessarily envy-free, which are a synthesis

of similar notions introduced by Brams et al. [BEF04]. Among other results, they show

83

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

that possibly envy-free allocations are easy to compute while determining necessarily

envy-free allocations are NP-hard even when the number of goods is as twice as large

as the the number of agents. Brams, Edelman, and Fishburn [BEF04] considered sce-

nario where agents rank individual goods only and have additively separable preferences.

Based on Borda scoring vector, they defined two types of allocation: maxsum (utilitar-

ianism) and maxmin (egalitarianism). Here the Borda score of object ri for agent aj

ranges from 1 (when ri is aj ’s least preferred object) to m (when ri is aj ’s most preferred

object), and the score total of an agent is the sum of the Borda scores of the objects

assigned to her. While the maxsum allocations aim at maximizing the sum of Borda

scores of all agents, the maximin allocations seek to maximize the minimum score of

any agent.

It is motivated by the work of Brams et al. [BEF04], we will generalize their Borda-

optimal allocations [BEF04] to arbitrary scoring vectors and aggregation functions, and

study them in detail, from the point of view of social choice and computational complex-

ity. Beyond Borda, the scoring vectors we consider are k-approval (each agent attaches a

score of 1 to her k most preferred objects and zero to the other objects), lexicographicity

(a kth ranked good counts more than the sum of all objects that have the lower ranks),

and quasi-indifference (all objects have roughly the same score, up to very small differ-

ences). As for aggregation functions, we focus on utilitarianism (⋆ = +), egalitarianism

(⋆ = min), ⋆ = leximin, (which in a strict sense is not an aggregation function), as well

as ⋆ = envy, which is an useful measure for minimizing the difference between score of

agents.

6.1 Positional Scoring Allocation Rules

Typically, an allocation rule for dividing m indivisible goods among agents is char-

acterized by a scoring vector and a social welfare aggregation function. Similarly

to positional scoring voting rules in voting, a scoring vector is defined as a vector

s = (s1, . . . , sm) ∈ Rm satisfying s1 ≥ · · · ≥ sm ≥ 0, where for each agent’s rank-

ing, s1 is the score of her top-ranked good, s2 is the score of her second-ranked good,

and so on. The final score of an allocation for an agent is the sum of the scores of the

goods assigned to her. The aggregation function ⋆ (+, min, leximin and envy) aggregate

the individual scores of all agents toward an optimal allocation. We now describe the

model of our problems in detail.

84

6.1 Positional Scoring Allocation Rules

Let A = {a1, . . . , an} be a set of agents and R = {r1, . . . , rm} a set of indivisible goods.

An allocation is a partition π = (π1, . . . , πn), where πi ⊆ R is the bundle of goods

assigned to agent ai. Since the number of all subsets of goods are exponential in m

a linear order preference over 2R is impossible. Hence, we assume that each agent ai

provides her strict ranking ≻i on the set of single goods only. Under this assumption, a

profile P = (≻1, . . . ,≻n) is a collection of n rankings over R, and a allocation rule (re-

spectively, a allocation correspondence) maps any profile to an allocation (respectively,

a nonempty subset of allocations).

We now define a family of allocation rules that more or less corresponds to the family

of positional scoring rules in voting (see, e.g., [BF02]).

Definition 6.1 A scoring vector is a vector s = (s1, . . . , sm) of real numbers such that

s1 ≥ · · · ≥ sm ≥ 0 and s1 > 0. Given a preference ranking ≻ over R and r ∈ R, let

rank(r,≻) denote the rank of r under ≻. The utility function over 2R induced by the

ranking ≻ on R and the scoring vector s is for each bundle B ⊆ R defined by

u≻,s(B) =
∑

r∈B
srank(r,≻).

We consider the following specific scoring vectors:

• Borda scoring: borda = (m,m− 1, . . . , 1),1

• lexicographic scoring: lex = (2m−1, 2m−2, . . . , 1),

• quasi-indifference for some ε, 0 < ε ≪ 1:

ε-qi = (1 + (m− 1)ε, 1 + (m− 2)ε, . . . , 1).

• k-approval: k-app = (1, . . . , 1, 0, . . . , 0), where the first k entries are ones and all

remaining entries are zero.

Example 6.1 Let R = {a, b, c} be a set of three goods and let two agents have the

following preference profile: (a ≻ b ≻ c, b ≻ c ≻ a). Let π = ({a}, {b, c}). Then, for the

Borda scoring vector, agent 1’s bundle {a} has value 3 and agent 2’s bundle {b, c} has

value 3 + 2 = 5.

1Note that the usual definition of the Borda scoring vector in voting is (m− 1,m− 2, . . . , 1, 0). Here,
together with [BEF04] we fix the score of the bottom-rank object to 1, meaning that getting it is
better than nothing. For scoring voting rules, a translation of the scoring vector has obviously no
impact on the winner(s); for allocation rules, however, it does.

85

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

The individual utilities are then aggregated using a monotonic, symmetric aggregation

function that is then to be optimized. The four we will use here are among the most ob-

vious ones: sum (utilitarianism), min, leximin (two versions of egalitarianism), and envy

(that minimizes the envy of an allocation). Leximin refers to the (strict) lexicographic

preorder over utility vectors whose components have been preordered nondecreasingly.

Formally, for x = (x1, . . . , xn), let x′ = (x′1, . . . , x
′
n) denote some vector that results

from x by rearranging the components of x nondecreasingly, and define x <leximin y if

and only if there is some i, 0 ≤ i < n, such that x′j = y′j for all j, 1 ≤ j ≤ i, and

x′i+1 < y′i+1.

For each scoring vector s, we thus have four allocation correspondences:

• Fs,+(P) = argmaxπ
∑

1≤i≤n u≻i,s(πi),

• Fs,min(P) = argmaxπ min1≤i≤n{u≻i,s(πi)}, and

• Fs,leximin(P) = argmaxπleximin(u≻1,s(π1), . . . , u≻n,s(πn)),

• Fs,envy(P) = argminπ maxj 6=i

{

1,
u≻i,s(πj)

u≻i,s(πi)

}

,

where P = (≻1, . . . ,≻n) is a profile and π = (π1, . . . , πn) an allocation. Whenever we

write Fs,⋆, we mean any one of Fs,+, Fs,min, Fs,leximin, and Fs,envy.

Example 6.2 For n = 2 agents and m = 5 goods, R = {a, b, c, d, e}, assume we have

the profile P = (abcde, bcdea) (where the leftmost item is the most preferred one). The

optimal allocations are described in Table 6.1. For the case of the 3-approval, the single

good e can be assigned to any agent without changing the social welfare. In case of the

lexicographic scoring vector, the envy of an allocation is minimized if and only if a is

assigned to agent 1 and b is assigned to agent 2; other remaining goods c, d, e can be

assigned arbitrary to agents.

Table 6.1: Optimal allocations for the instance given in Example 6.2.

Agg. function Borda quasi-ind lex 3-approval

+ (a, bcde) (a, bcde) (a, bcde) (a, bcd), (abc, d)
(ab, cd), (ac, bd)

min (ab, cde) (ab, cde) (ac, bde) (ab, cd), (ac, bd)

leximin (ab, cde) (ab, cde) (ac, bde) (ab, cd), (ac, bd)

envy (ab, cde), (ac, bde) (ab, cde), (ac, bde) (a?, b?) (ab, cd), (ac, bd)

86

6.2 Problem Modeling

6.2 Problem Modeling

For a given scoring vector s and a given aggregation function Fs,envy, we define the

following decision problem associated with the value of an optimal allocation.

Fs,envy-Optimal-Allocation-Value (Fs,envy-OAV)

Given: A profile P = (≻1, . . . ,≻n) of n agents’ rankings on a set R of indivisible

goods and a nonnegative integer t.

Question: Is there an allocation π = (π1, . . . , πn) with maxj 6=i

{

1,
u≻i,s

(πj)

u≻i,s
(πi)

}

≤ t?

Analogously, we define Fs,+-OAV by asking whether
∑

1≤i≤n u≻i,s(πi) ≥ t,

and Fs,min-OAV whether min1≤i≤n u≻i,s(πi) ≥ t, and Fs,leximin-OAV where the

bound is an ordered list (t1, . . . , tn) of nonnegative integers and we ask whether

(u≻1,s(π1), . . . , u≻n,s(πn)) >leximin (t1, . . . , tn).

Furthermore, we also consider the corresponding optimization version of the decision

problem above.

Fs,envy-Find-Optimal-Allocation (Fs,envy-FOA)

Input: A profile P = (≻1, . . . ,≻n) of n agents’ rankings on a set R of indivisible

goods.

Output: An allocation π = (π1, . . . , πn) that minimizes maxi6=j

{

1,
u≻i,s

(πj)

u≻i,s
(πi)

}

.

The problems Fs,+-FOA, Fs,min-FOA and Fs,leximin-FOA can be defined similarly. It is

easy to see that Fs,+-FOA (and thus Fs,+-OAV) are solvable in polynomial time for any

scoring vector s. Nevertheless, Fs,⋆-FOA and Fs,⋆-OAV are much more complicated for

any ⋆ ∈ {min, leximin, envy}. For the case of the k-approval scoring vector, Fk-app,min-

FOA and Fk-app,min-OAV are restricted cases of the problem of maximizing egalitarian

social welfare with {0, 1}-additive functions, which can be solved in polynomial time by

a network flow algorithm (see Golovin [Gol05]).

6.3 Our Results

In this section, we focus on the complexity of “winner determination” for a few key

combinations of a scoring vector and an aggregation function, considering both decision

87

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

and functional problems. In addition, we give several approximation results, one of

which makes use of a so-called picking sequences.

6.3.1 Complexity of Winner Determination

The complexity of determining an optimal allocation for a given scoring vector and a

given aggregation function has been established by Baumeister et al. [BBL+]. Namely,

they showed that Fǫ-qi,min-OAV, Fǫ-qi,leximin-OAV, Flex,min-OAV and Flex,leximin-OAV

are NP-complete by using the reduction from X3C. We now extend these results to the

problems Fǫ-qi,envy-OAV and Flex,envy-OAV.

Theorem 6.1 Fǫ-qi,envy-OAV is NP-complete.

Proof. Recall that an instance of X3C includes a finite set B with ‖B‖ = 3q and a

family S = {S1, . . . , Sn} of 3-element subsets of B. The question is whether there is a

subcollection S ′ ⊆ S such that every element of B occurs in exactly one member of S ′?

Let (B,S) be an instance of X3C (w.l.o.g assuming n > q), we construct an instance of

Fǫ-qi,envy-OAV as follows. There are n agents {a1, . . . , an}, each agent ai corresponds

to a set Si, 1 ≤ i ≤ n. We create a set R = B ∪ D of m = 4n − q goods, where B is a

set of 3q “real” goods, each corresponds to an element of B, and D is a set of 4(n− q)

“dummy” goods. Agent ai has the following preferences: Si ≻i B \ Si ≻i D, where

a set T in this order stands for all the goods of T in any fixed order. We now prove

that (B,S) is a yes-instance of X3C if and only if there exists an allocation of goods to

agents such that it has the value of at most

t =
4 + (8n− 8q − 2)ε

3 + (12n− 3q − 6)ε

(⇒) Suppose that (B,S) is a yes-instance of X3C and let S ′ ⊆ S be an exact cover of B.

An allocation π whose value is exactly t can be computed as follows. For every Si ∈ S ′,

assign a bundle corresponding to Si, each of value 3+(12p−3q−6)ε, to agent ai. Next, we

assign the dummy goods to n−q remaining agents in a way such that they get the bundles

of the same value. Without loss of generality, we assume that D = {r1, r2, . . . , r4(n−q)}

and r1 ≻ r2 ≻ · · · ≻ r4(n−q), then we can divide D into n − q disjoint subsets, each of

the form {rj , rj+1, r4(n−q)−j , r4(n−q)−j+1}, j = 1, 3, . . . , 2(n − q) − 1. It is easy to see

that each of such subsets has the value of 4 + (8p − 8q − 2)ε. Hence, the value of the

allocation π equals to t.

88

6.3 Our Results

(⇐) Assume that (B,S) is a no-instance of X3C and let π be an optimal allocation

for Fǫ-qi,envy-OAV. By the definition of quasi-indifference scoring vector, there will be q

agents, each receives three goods from B, and other n− q agents, each gets four dummy

goods of the same value from D. Since there is no exact cover of B there must be at

least one agent who does not get the first three goods at her top-rank. This means the

value of π is greater than t. Hence, the instance constructed from (B,S) is no-instance

of Fǫ-qi,envy-OAV. ❑

Theorem 6.2 Flex,envy-OAV is NP-complete.

Proof. The proof is again by a reduction from X3C. Given an instance (B,S) with

S = {S1, . . . , Sn} and ‖B‖ = 3q, an instance of Flex,envy-OAV is constructed with n

agents and n + 2q goods. The set of goods is R = B ∪ D, where B is set of 3q “real”

goods, each corresponds to an element of B, and D is a set of “dummy” goods but at

this time ‖D‖ = n− q. Agent ai has the following preferences: D >i Si >i B \ Si. One

can prove that (B,S) is a yes-instance of X3C if and only if there exists an allocation

for the new constructed instance of Flex,envy-OAV with the value of at most

t =
22q+n

23q−1 + 23q−2 + 23q−3

(⇒) Suppose that (B,S) is a yes-instance of X3C and let S ′ be an exact cover of B. We

compute an allocation π as follows. For each i such that Si ∈ S, we assign the bundle Si

to the corresponding agent ai. Each of n− q remaining agents will get a dummy good

from D. It is easy to see that the value of the allocation π is exactly t.

(⇐) Assume that there is no exact cover for (B,S). Let π be an optimal allocation for

the instance that has been constructed from (B,S). Since ‖D‖ = n − q, there will be

q agents who do not get any dummy goods from D. Moreover, at least one of them,

say ai, cannot receive the bundle Si. Hence, for this agent, her utility is of at most

23q−1+23q−2+23q−3− 1. This implies that the value of the allocation π is greater than

t. ❑

For a special case when the number of agents is not the part of input, we provide

efficient algorithms for both decision and optimization problems by using dynamic pro-

gramming.

89

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

Theorem 6.3 For any scoring vector s ∈ {borda, ǫ-qi, lex} and for any aggregation

function ⋆ ∈ {min, leximin, envy}, the problems Fs,⋆-OAV and Fs,⋆-FOA are solvable

in polynomial time whenever the number of agents is constant.

Proof. It is enough to prove the theorem for Fs,leximin-FOA.

To show that the Fs,leximin-FOA is solvable in polynomial time for Borda and quasi-

indifference scoring vector, we consider the following algorithm. Let R = {r1, . . . , rm}

be a set of m goods and A = {a1, . . . , an} be a set of n agents. We compute the

individual utility of every agent for all possible allocations that assign the first j goods

to the n agents, encoded as an n-dimensional vector. Let V0 be the set containing

only the vector ~0. In each step j, for each vector ~v ∈ Vj−1 compute one vector vi =

~v + srank(rj ,≻i) · ~ei for each agent ai, 1 ≤ i ≤ n, where ~ei denotes the i-th unit vector.

The vector vi is added to Vj . It is easy to see that ‖Vj‖ ≤ ‖Vm‖ for all j ≤ m.

For s = borda, every entry of each vector in Vm is bounded above by m(m+1)/2 and thus

‖Vm‖ ∈ O(m2n). For s = ǫ-qi, every entry of each vector in Vm has the form p + q · ε,

where p, q ∈ Z, 0 ≤ p ≤ m and 0 ≤ q ≤ m(m−1)/2. Hence, ‖Vm‖ ∈ O(m3n). It is not

difficult to see that the running time of the algorithm depends on ‖Vm‖ and thus is

polynomial in m.

We now turn to lexicographic scoring, s = lex. The case with two agents can be solved

efficiently by implementing the following simple rules when the preferences of the agents

are examined from the most to the least preferred good:

• Case 1: If the agents have different goods that are not assigned yet on the current

position, both agents get their current goods and proceed with the next position.

• Case 2: If both current objects are already assigned, proceed with the next

position.

• Case 3: If both agents rank the same object, say r, that is not assigned yet on

the current position, then let ri 6= r be the most preferred good of agent ai, i ∈

{1, 2} that has not been assigned yet, and w.l.o.g. assume that rank(r1,≻1) ≥

rank(r2,≻2). Assign r to agent a1 and all remaining objects to agent a2.

• Case 4: The last case is that only one of the current objects, say r (w.l.o.g.,

the one ranked by agent a1), has not been assigned yet. If r is not the most

preferred good of agent a2 among those not yet assigned, then assign it to agent a1

and remaining objects to agent a2. Otherwise, let ri 6= r be the most preferred

90

6.3 Our Results

good of agent ai, i ∈ {1, 2} that has not been assigned yet. Note that rank(r,≻1

) < rank(r,≻2). (i) If rank(r1,≻1) < rank(r,≻2), agent 1 receives r1, while

agent 2 gets r and the remaining objects. (ii) If rank(r1,≻1) = rank(r,≻2),

assign r1 to agent a1 and g to agent 2, and proceed with the next position. (iii) If

rank(r,≻2) < rank(r1,≻1) < rank(r2,≻2), assign r to agent a2 and the remaining

objects to agent a1. (iv) If rank(r1,≻1) ≥ rank(r2,≻2), give r to agent a1 and

the remaining objects to agent a2.

Obviously, the running time of the algorithm above is polynomial in m.

Example 6.3 Consider an instance with two agents {a1, a2} and six single goods

{a, b, c, d, e, f}. The preferences of agents are given in Table 6.2, where the goods are

arranged from the top to the bottom according to their rank. The goods that are in bold

face show an optimal allocation.

Table 6.2: Optimal allocations for the problem with two agents, lexicographic scoring
vector and min (leximin) aggregate function.

Ranking Case 4

of Case 1 Case 2 Case 3 (i) (ii) (iii) (iv)

goods a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2 a1 a2

1 a a a b a b a b a b a b a b

2 b c d e c a e f c a e f e f

3 c d c c b d c a d c c a c a

4 d e b f d e d e b d b c d d

5 e b e a e c b c f e d e b c

6 f f f d f f f d e f f d f e

We now prove by induction on the (constant) number n that the problem Fs,leximin-

FOA is solvable in polynomial time, and the number of optimal solutions is always

bounded by a constant. Indeed, the induction base n = 2 has been already shown.

Also, by the algorithm described above, there are at most two optimal allocations for

any instance with two agents. Assume now that the claim is true for n−1, where n > 2.

Consider an instance I with a set A of n agents and and a set R of m goods and a profile

P = (≻1, . . . ,≻n) of agents’ ranking over the single goods. It is not difficult to show

91

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

that every optimal allocation for I must have the egalitarian utility of at least 2m−n,

that is, each agent must be received at least one good from her n most preferred goods.2

Formally, if π = (π1, . . . , πn) is an optimal allocation then πi ∩Si 6= ∅, where Si denotes

the set of the first n goods of agent ai’s ranking, for all i, 1 ≤ i ≤ n. Furthermore, there

is at least one agent who receives her top-rank good. We denote by D the subset of

S = S1 × · · · × Sn such that for any vector µ = (rµ1 , . . . , r
µ
n) ∈ D, rµi 6= rµj for all i 6= j,

and there is at least one good rµi that is the most preferred object of agent ai, for some

i. Obviously, ‖D‖ ≤ ‖S‖ ∈ O(1) since n is constant. We next define the set

W = argmaxµ min
1≤i≤n

2m−rank(rµi ,≻i), µ ∈ D

It is easy to see that the set W contains a constant number of vectors and can be

computed in O(1) time. For each vector w = (rw1 , . . . , r
w
n) ∈ W , let:

kw = min
1≤i≤n

{rank(rwi ,≻i)}

and

Aw = {ai ∈ A| rank(rwi ,≻i) = kw} and Rw = R \ {rw1 , . . . , r
w
n }

Let πw = (πw
j)aj∈Aw denote an optimal allocation for the new instance with ‖Aw‖ agents

and ‖Rw‖ goods. One can prove that such an optimal allocation πw can be computed

in polynomial time. Indeed, let us consider two cases below:

• k = 1: this means there are not any two agents having the same good at top of

their ranking. For this case we assign n top-rank goods to n agents and remove

them from the set R. So, now instead of solving I, we only need to solve the new

instance I ′ with n agents and m− n goods.

• k ≥ 2: for each vector w ∈ W , there is at least one agent receiving her most

preferred object and she will not be in Aw. Hence, we have ‖Aw‖ ≤ ‖A‖ − 1. By

the induction hypothesis, the set V of all optimal allocations πw of (Aw, Rw) can

be found in polynomial time and ‖V ‖ is bounded by a constant.

2Note that we need only consider the case m > n, otherwise the problem can be solved in O(1) time
since n,m is constant.

92

6.3 Our Results

A possible optimal allocation µw = (µw
1 , . . . , µ

w
n) for I will be a “combination” between

the vector w ∈ W and a vector πw ∈ V . Formally, µw is determined as follows:

µw
i =

{

{rwi } if ai /∈ Aw,

{rwi } ∪ {πw
i } otherwise

(i = 1, . . . , n)

Since the size of both W and V is bounded by a constant the number of such allocations

µw is also bounded by a constant. Hence, an optimal allocation for the original instance

I can be found by exhaustive search in time O(1). This completes the proof. ❑

Example 6.4 Consider an instance I with 5 agents and 10 goods, the ranking of agents

over single goods are given in the Table 6.3.

Table 6.3: The ranking of agents over the single goods for the instance given in Exam-
ple 6.4.

Ranking Agent a1 Agent a2 Agent a3 Agent a4 Agent a5

1 r1 r2 r1 r3 r2
2 r2 r3 r4 r5 r5
3 r3 r8 r8 r7 r3
4 r4 r10 r9 r10 r9
5 r9 r6 r10 r2 r7
6 r6 r5 r5 r4 r10
7 r7 r9 r6 r6 r8
8 r5 r7 r3 r8 r6
9 r10 r4 r7 r1 r1
10 r8 r1 r2 r9 r4

The set W contains two vectors:

w1 = (r1, r2, r4, r3, r5), w2 = (r1, r3, r4, r5, r2)

- Consider w1 = (r1, r2, r4, r3, r5), we have:

Aw1 = {a3, a5} and Rw1 = {r6, r7, r8, r9, r10}

An unique optimal allocation for the instance (Aw1 , Rw1) with two agents is

πw1 = ({r8}, {r6, r7, r9, r10})

93

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

Therefore, a possible optimal allocation for the original instance I is

µw1 = (r1, r2, {r4, r8}, r3, {r5, r6, r7, r9, r10})

- Consider w2 = (r1, r3, r4, r5, r2), we have:

Aw2 = {a2, a3, a4} and Rw2 = {r6, r7, r8, r9, r10}

For the new instance (Aw2 , Rw2), there are two optimal allocations:

πw2 = (r8, {r6, r9, r10}, r7)

π′w2 = ({r6, r9, r10}, r8, r7)

Hence, the possible optimal allocations for the original instance I are:

µw2 = (r1, {r3, r8}, {r4, r6, r9, r10}, {r5, r7}, r2)

µ′w2 = (r1, {r3, r6, r9, r10}, {r4, r8}, {r5, r7}, r2)

By comparing between µw1 , µw2 and µ′w2, we find that µw1 is the unique optimal alloca-

tion for I.

6.3.2 Approximation

This section deals with the approximability of the problem Fs,⋆-FOA for a scoring

vectors s ∈ {lex, ǫ-qi} and for an aggregation functions ⋆ ∈ {min, envy}. We first give

a simple approximation algorithm within a factor of 1/2 for Flex,min-FOA. The proof is

based on the matching technique.

Theorem 6.4 There exists a (1/2)-approximation algorithm for Flex,min-FOA.

Proof. Given an instance with a set A of n agents, a set R of m goods and a profile

P = (≻1, . . . ,≻n), our algorithm is described as follows. We first construct a weighted

complete bipartite graph G = (A×R,E): a vertex ai for every agent i, a vertex rj for

every good rj , and a weight function w which is defined as w(ai, rj) = srank(rj ,≻i). We

create a graph G′ by deleting all the edges in G of the weight less than 2m−1. If there

94

6.3 Our Results

exits a maximum matching M of G′ then return M. Otherwise, we replace m − 1 by

m− 2 and repeat until we find a maximum matching.

A matching M returned by the algorithm will correspond to an incomplete allocation

of m goods to n agents. By assigning all remaining goods to agents greedily, we obtain

a complete allocation δ. We now prove that δ has the egalitarian social welfare within

a factor of 1/2 of the optimum. Indeed, assume that π is an optimal allocation. The

collective utility of π has the form of (2k1 +α1, . . . , 2
kn +αn) where m−n ≤ ki ≤ m− 1

and αi < 2ki . Obviously, an allocation that has the collective utility of (2k1 , . . . , 2kn)

will be exactly corresponding to a maximum matching of G. Without loss of generality,

we can assume that kn = min{k1, . . . , kn}. Then it is easy to see that the minimum

weight edge in M must have the weight of 2kn . Finally, the egalitarian social welfare of

δ is at least of

2kn >
1

2
(2kn + αn) = min{2k1 + α1, . . . , 2

kn + αn}

The proof is completed. ❑

While the hardness results for Fborda,min-FOA and Fborda,envy-FOA are still not

known, Baumeister et al. [BBL+] studied the approximability of Fborda,min-FOA us-

ing two simple protocols regular picking sequences (1 . . . , n)∗ and fair picking sequences

(1 . . . nn . . . 1)∗. For these protocols, at each step, a designated agent will pick his most

preferred object among those have not been assigned yet. One may wonder why these

protocols deserve to be investigated. The reasons are twofold: one, picking sequences

are very cheap in communication, because agents only reveal part of their preferences

by picking objects, and two, they are very easy to implement and have linear running

time in m, where m is number of objects.

We next show that when the number of goods is twice as large as the number of agents,

the fair picking sequence yields a 1/2-approximation algorithm for Fborda,envy-FOA.

Theorem 6.5 For m = kn objects, fair picking sequence is 2-approximation algorithm

for Fborda,envy-FOA.

Proof. Let π = (π1, . . . , πn) be an allocation obtained by applying the fair picking

sequence. We will prove that for every agent ai:

ui(πj)

ui(πi)
≤ 2−

2

n
−

n− 2

n(m+ 1)
(6.1)

95

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

for all j 6= i. In fact, because of the symmetry, we need only to prove the claim for the

case i = 1, the other cases can be proved similarly.

We consider two cases as follows:

Case 1: m = 2kn. According to the picking policy, agent a1 will pick an object at steps

1, 2n, 2n+ 1, 4n, 4n+ 1 . . . , 2(k − 1)n+ 1, 2kn. Hence, in the worst case, agent a1

gets objects ranked in the positions 2(j − 1)n + 1, 2jn, for j = 1, . . . , k and thus

the score of the bundle she received is:

u1(π1) ≥ 1 + 2n+ (2n+ 1) + 4n+ · · ·+ [2(k − 1)n+ 1] + 2kn

= k + 2n · [1 + 3 + · · ·+ (2k − 1)]

= k + 2nk2

=
m

2n
+ 2n

m2

4n2

=
m(m+ 1)

2n
.

The evaluation of agent i’s bundle, i 6= 1, by agent a1 is maximal if they have

the same ranking. In this case, agent ai gets the objects she and agent a1 ranked

2, 3, 6, 7, . . . ,m− 2,m− 1. Hence, we have:

u1(πi) ≤ m− 1 +m− 2 +m− 5 +m− 6 + · · ·+m− 4k + 3 +m− 4k + 2

= k(2m− 4k + 1)

=
m

2n

(

m−
m

2n
+ 1
)

.

It follows that:

a =
u1(πi)

u1(π1)
=

m

2n

(

m−
m

2n
+ 1
)

m(m+ 1)

2n

=
2mn− 2m+ n

n(m+ 1)

= 2−
2

n
−

n− 2

n(m+ 1)
.

Case 2: m = (2k + 1)n. By the same argument for the case 1, we can compute the

score of agent a1 in the worst-off case is

u1(π1) ≥
1

n

2kn
∑

j=1

(n+ j) +m− 2kn = m+ k + 2k2n,

96

6.4 Conclusion and Future Work

and for any bundle πi of agent ai, i 6= 1:

u1(πi) ≤ k(2m− 4k + 1) +m− 4k − 1.

Hence, we have:

b =
u1(πi)

u1(π1)
=

k(2m− 4k + 1) +m− 4k − 1

m+ k + 2k2n
.

Replacing k = m−n
2n and simplification, we obtain:

b =
2mn(m− n)− 2(m− n)2 + 2mn2 − 3n(m− n)− 2n2

2mn2 + n(m− n) + n(m− n)2

=
2m2n+mn− n2 − 2m2

n(n2 +m− n+m2)
.

Finally, we prove that b < a. Indeed,

b < a ⇐⇒
2m2n+mn− n2 − 2m2

n(n2 +m− n+m2)
<

2mn− 2m+ n

n(m+ 1)

⇐⇒ 2mn3 − 4mn2 + 2mn+ n3 > 0

⇐⇒ 2m(n− 1)2 + n2 > 0.

The last inequality holds for all m,n > 0, thus b < a. ❑

6.4 Conclusion and Future Work

We have studied the positional scoring rules for multiagent allocation of indivisible

goods. We have generalized the results of Brams et al. [BEF04] for variety of aggregation

functions and for several types of scoring vector. Tables 6.4 and 6.5 summarize the

obtained results in this chapter. These tables also mention some open questions that

would be interesting for the future research. Among those, the most important one

could be finding the missing complexity results for the Borda case.

97

Chapter 6 Positional Scoring Rules for Multiagent Resource Allocation

Table 6.4: Overview of complexity results with respect to positional scoring rules.

OAV FOA Reference

Fs,+ in P PO

Fs,min NP-comp∗ NP-hard∗

lex or ε-qi NP-comp NP-hard [BBL+]
borda open open

lex or borda or
P PO Theorem 6.3

ε-qi, if n ∈ O(1)

Fs,leximin NP-comp∗ NP-hard∗

lex or ε-qi NP-comp NP-hard [BBL+]
borda open open

lex or borda or
P PO Theorem 6.3

ε-qi, if n ∈ O(1)

Fs,envy NP-comp∗ NP-hard∗

lex or ε-qi NP-comp NP-hard Theorem 6.1 & 6.2
borda open open

lex or borda or
P PO Theorem 6.3

ε-qi, if n ∈ O(1)

∗if s is part of the input (even for two agents with same preferences)

Table 6.5: Overview of approximability results with respect to positional scoring rules.

Scoring rules min Reference envy Reference

Borda (m = kn) 1/2 [BBL+] 2 Theorem 6.5

lex 1/2 Theorem 6.4 open

98

Bibliography

[AAWY97] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for
scheduling. In Proceedings of the 8th ACM-SIAM Symposium on Discrete
Algorithms, pages 493–500. Society for Industrial and Applied Mathemat-
ics, January 1997.

[AAWY98] N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for
scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

[ABSS93] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optimia in lattices, codes, and systems of linear equations. In Proceedings
of the 34th Annual Symposium on Foundations of Computer Science, pages
724–733, 1993.

[AC04] L. Ausubel and P. Cramton. Auctioning many divisible goods. Journal of
the European Economic Association, 2(2-3):480–493, 2004.

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Spaccamela, and
M. Protasi. Complexity and Approximation. Combinatorial Optimization
Problems and their Approximability Properties. Springer, 1999.

[ACG05] J. Abrache, T. Crainic, and M. Gendereau. Models for bundle trading in
financial markets. European Journal of Operation Research, 160:88–105,
2005.

[AFS08] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph
matchings. In Proceedings of Approximation, Randomization and Combina-
torial Optimization. Algorithms and Techniques. 11th International Work-
shop APPROX 2008 and 12th International Workshop RANDOM 2008,
pages 10–20. Springer-Verlag Lecture Notes in Computer Science #5171,
August 2008.

[AFS12] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph
matchings. ACM Transactions on Algorithms, 8(3):24, 2012.

[AKS02] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathe-
matics, 2:781–793, 2002.

[AL96] S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum,
editor, Approximation Algorithms for NP-Hard Problems, chapter 10, pages
399–446. PWS Publishing Company, 1996.

99

Bibliography

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[Aro94] S. Arora. Probabilistic checking of proofs and the hardness of approximation
problems. PhD thesis, UC Berkeley, 1994.

[Aro98] S. Arora. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45(5):753–
782, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. Journal of the ACM, 45(1):70–122, 1998.

[AS07] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair
allocation of indivisible goods. In Proceedings of the 39th ACM Symposium
on Theory of Computing, pages 114–121. ACM Press, July 2007.

[AS10] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair
allocation of indivisible goods. SIAM Journal on Computing, 39(7):2970–
2989, 2010.

[BBL+] D. Baumeister, S. Bouveret, J. Lang, T. Nguyen, J. Rothe, and A. Saffidine.
Positional scoring rules for the allocation of indivisible goods. Submited.

[BCL+06] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen.
Weak monotonicity characterizes deterministic dominant strategy imple-
mentation. Econometrica, 74(4):1109–1132, 2006.

[BD05] I. Bezáková and V. Dani. Allocating indivisible goods. SIGecom Exchanges,
5(3):11–18, 2005.

[BE05] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of
Algorithms, 54(2):168–204, 2005.

[BEF04] S. Brams, P. Edelman, and P. Fishburn. Fair division of indivisible items.
Theory and Decision, 5(2):147–180, 2004.

[BEL10] S. Bouveret, U. Endriss, and J. Lang. Fair division under ordinal prefer-
ences: Computing envy-free allocations of indivisible goods. In Proceedings
of the 19th European Conference on Artificial Intelligence, pages 387–392.
IOS Press, 2010.

[BF00] S. Brams and P. Fishburn. Fair divisionof indivisible items between two
people with identical preferences: Envy-freeness, pareto-optimality. Social
Choice and Welfare, 17(2):247–267, 2000.

[BF02] S. Brams and P. Fishburn. Voting procedures. In K. Arrow, A. Sen, and
K. Suzumura, editors, Handbook of Social Choice and Welfare, volume 1,
pages 173–236. North-Holland, 2002.

100

Bibliography

[BH92] R. Boppana and M. Halldórsson. Approximating maximum independent
sets by excluding subgraphs. BIT, 32(2):180–196, 1992.

[BH06] A. Björklund and T. Husfeldt. Inclusion–exclusion algorithms for counting
set partitions. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 575–582, 2006.

[BK05] S. Brams and D. King. Efficient fair division-help the worst off or avoid
envy. Rationality and Society, 17(4):387–421, 2005.

[BKK12] S. Brams, D. Kilgour, and C. Klamler. The undercut procedure: an al-
gorithm for the envy-free division of indivisible items. Social Choice and
Welfare, 39(2-3):615–631, 2012.

[BL08] S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of
indivisible goods: Logical representation and complexity. Journal of Arti-
ficial Intelligence Research, 32:525–564, 2008.

[BLFL05] S. Bouveret, M. Lemâıtre, H. Fargier, and J. Lang. Allocation of indivisible
goods: a general model and some complexity results. In Proceedings of the
4th International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 1309–1310, 2005.

[BN07] L. Blumrosen and N. Nisan. Combinatorial auctions. In N. Nisan,
T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, chapter 11, pages 267–299. Cambridge University Press, 2007.

[BS06] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings
of the 38th ACM Symposium on Theory of Computing, pages 31–40. ACM
Press, July 2006.

[BST98] C. Bazgan, M. Santha, and Z. Tuza. Efficient approximation algorithms for
the subset-sums equality problem. In Proceedings of the 25th International
Colloquium on Automata, Languages and Programming, pages 387–396.
Springer-Verlag Lecture Notes in Computer Science #1443, 1998.

[BT95] S. Brams and A. Taylor. An envy-free cake division protocol. The American
Mathematical Monthly, 102(1):9–18, 1995.

[BT96] S. Brams and A. Taylor. Fair Division: From Cake-Cutting to Dispute
Resolution. Cambridge University Press, 1996.

[CCK09] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating goods to max-
imize fairness. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 107–116. IEEE Computer Society
Press, 2009.

[CCPV07] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a sub-
modular set function subject to a matroid constraint (extended abstract).

101

Bibliography

In Proceedings of the 12th International Integer Programming and Combi-
natorial Optimization Conference, pages 182–196. Springer-Verlag Lecture
Notes in Computer Science #4513, June 2007.

[CDE+06] Y. Chevaleyre, P. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,
J. Padget, S. Phelps, J. Rodŕıguez-Aguilar, and P. Sousa. Issues in multi-
agent resource allocation. Informatica, 30:3–31, 2006.

[CEEM04] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent re-
source allocation with k-additive utility functions. In Proceedings of the
DIMACS-LAMSADE Workshop on Computer Science and Decision The-
ory, volume 3 of Annales du LAMSADE, pages 83–100, 2004.

[CEEM07] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Reaching envy-
free states in distributed negotiation settings. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 1239–1244.
IJCAI, January 2007.

[CEEM08] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource
allocation in k-additive domains: Preference representation and complexity.
Annals of Operations Research, 163:49–62, 2008.

[CKW92] J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for
maximizing the minimum completion time. Operations Research Letters,
11(5):281–287, 1992.

[CLRS09] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms (3. ed.). MIT Press, 2009.

[CSS05] V. Conitzer, T. Sandholm, and P. Santi. Combinatorial auctions with k-
wise dependent valuations. In Proceedings of the 20th National Conference
on Artificial Intelligence, pages 248–254. AAAI Press, 2005.

[CSS06] P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial Auctions. MIT
Press, 2006.

[CVZ10] C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized round-
ing via exchange properties of combinatorial structures. In Proceedings of
the 51th Annual IEEE Symposium on Foundations of Computer Science,
pages 575–584. IEEE Computer Society, 2010.

[DFL82] B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the
minimum processor finish time in a multiprocessor system. SIAM Journal
on Algebraic and Discrete Methods, 3(2):452–454, 1982.

[Din07] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM,
54(3):12, 2007.

[DNS10] S. Dobzinski, N. Nisan, and M. Schapira. Approximation algorithms for
combinatorial auctions with complement-free bidders. Mathematics of Op-
erations Research, 35(1):1–13, 2010.

102

Bibliography

[DW11] D. Shmoys D. Williamson. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

[DWL05] P. Dunne, M. Wooldridge, and M. Laurence. The complexity of contract
negotiation. Artificial Intelligence, 164(1–2):23–46, 2005.

[EF01] P. Edelman and P. Fishburn. Fair division of indivisible items among peo-
ple with similar preferences. Mathematical Social Sciences, 41(3):327–347,
2001.

[Eso01] M. Eso. An iterative auction for online seats. In Mathematics of the Inter-
net: E-Auctions and Markets. Springer-Verlag, Berlin, 2001.

[Fei08] U. Feige. On allocations that maximize fairness. In Proceedings of the 19th
ACM-SIAM Symposium on Discrete Algorithms, pages 287–293. Society
for Industrial and Applied Mathematics, January 2008.

[FGMS06] L. Fleischer, M. Goemans, V. Mirrokni, and M. Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In
Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,
pages 611–620. ACM Press, 2006.

[FK10] F. Fomin and D. Kratsch. Exact exponential algorithms. Springer, 2010.

[GA99] G. Gambosi V. Kann A. Marchetti-Spaccamela M. Protasi G. Ausiello,
P. Crescenzi. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer Verlag, 1999.

[GHIM09] M. Goemans, N. Harvey, S. Iwata, and V. Mirrokni. Approximating sub-
modular functions everywhere. In Proceedings of the 20th ACM-SIAM Sym-
posium on Discrete Algorithms, pages 535–544. Society for Industrial and
Applied Mathematics, January 2009.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6(4):675–695, 1977.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GMR97] M. Golfarelli, D. Maio, and A. Rizzi. A task swap negotiation protocol
based on the contract net paradigm. Technical report, CSITE, University
Bologna, 1997.

[Gol05] D. Golovin. Max-min fair allocation of indivisible goods. Technical Report
CMU-CS-05-144, School of Computer Science, Carnegie Mellon University,
June 2005.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563–1581, 1966.

[Gra69] R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal
of Applied Mathematics, 17(2):416–429, 1969.

103

Bibliography

[Gra97] M. Grabisch. k-order additive discrete fuzzy measures and their represen-
tation. Fuzzy Sets and Systems, 92(2):167–189, 1997.

[H̊as99] J. H̊astad. Clique is hard to approximate within n1−ǫ. Acta Mathematica,
182(1):105–142, 1999.

[H̊as01] J. H̊astad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[Hoc95] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, 1995.

[HP02] D. Herreiner and C. Puppe. A simple procedure for finding equitable al-
locations of indivisible goods. Social Choice and Welfare, 19(2):415–430,
2002.

[Hro01] J. Hromkovič. Algorithmics for hard problems-Introduction to combinato-
rial optimization, randomization, approximation, and heuristics. Springer,
2001.

[Hro05] J. Hromkovič. Design and Analysis of Randomized Algorithms: Introduc-
tion to Design Paradigms. Springer, 2005.

[HS74] E. Horowitz and S. Sahni. Computing partitions with applications to the
knapsack problem. Journal of the ACM, 21(2):277–292, 1974.

[HS76] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM, 23(2):317–327, 1976.

[HS87] D. Hochbaum and D. Shmoys. Using dual approximation algorithms for
scheduling problems theoretical and practical results. Journal of the ACM,
34(1):144–162, 1987.

[IK75] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

[Joh50] N. John. The bargaining problem. Econometrica, 18(2):155–162, April
1950.

[Joh74] D. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and System Sciences, 9(3):256–278, 1974.

[Kar72] R. Karp. Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103,
1972.

[KGMO07] S. Khot, G., E. Mossel, and R. O’Donnell. Optimal inapproximability re-
sults for MAX-CUT and other 2-variable CSPs? SIAM Journal on Com-
puting, 37(1):319–357, 2007.

104

Bibliography

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pages 767–775,
2002.

[KK98] M. Kovalyov and W. Kubiak. A fully polynomial approximation scheme for
minimizing makespan of deteriorating jobs. Journal of Heuristics, 3(4):287–
297, 1998.

[KLMM08] S. Khot, R. Lipton, E. Markakis, and A. Mehta. Inapproximability results
for combinatorial auctions with submodular utility functions. Algorithmica,
52(1):3–18, 2008.

[KP07] S. Khot and A. Ponnuswami. Approximation algorithms for the max-
min allocation problem. In Proceedings of Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques. 10th Inter-
national Workshop APPROX 2007 and 11th International Workshop RAN-
DOM 2007, pages 204–217. Springer-Verlag Lecture Notes in Computer
Science #4627, 2007.

[KPW94] M. Kovalyov, C. Potts, and L. Wassenhove. A fully polynomial approxi-
mation scheme for scheduling a single machine to minimize total weighted
late work. Mathematics of Operations Research, 19(1):86–93, 1994.

[Law76] E. Lawler. A note on the complexity of the chromatic number problem.
Information Processing Letters, 5(3):66–67, 1976.

[Len83] H. Lenstra Jr. Integer programming with a fixed number of variables.
Mathematics of Operations Research, 8:538–548, 1983.

[LLN01] B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with
decreasing marginal utilities. In Proceedings of the 3rd ACM Conference
on Electronic Commerce, pages 18–28. ACM Press, 2001.

[LMMS04] R. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th ACM Conference
on Electronic Commerce, pages 125–131. ACM Press, 2004.

[LOS99] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in approx-
imately efficient combinatorial auctions. In Proceedings of the 1st ACM
Conference on Electronic Commerce, pages 96–102. ACM Press, 1999.

[LOS02] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in approx-
imately efficient combinatorial auctions. Journal of the ACM, 49(5):577–
602, 2002.

[LST90] J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming,
46(1):259–271, 1990.

[Mac94] J. MacMillan. Spelling spectrum rights. Journal of Economic perspective,
8:145–162, 1994.

105

Bibliography

[MN99] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[Mou88] H. Moulin. Axioms of Cooperative Decision Making. Cambridge University
Press, 1988.

[Mou04] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2004.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[MS85] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation
algorithm for the vertex cover problem. Acta Informatica, 22(1):115–123,
1985.

[MS07] A. Mu’alem and M. Schapira. Setting lower bounds on truthfulness (ex-
tended abstract). In Proceedings of the 18th ACM-SIAM Symposium on
Discrete Algorithms, pages 1143–1152. Society for Industrial and Applied
Mathematics, January 2007.

[MU05] M. Mitzenmacher and E. Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[NNRR] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Computational complexity
and approximability of social welfare optimization in multiagent resource
allocation. Journal of Autonomous Agents and Multiagent Systems. To
appear.

[NNRR12a] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Complexity and approx-
imability of egalitarian and Nash product social welfare optimization in
multiagent resource allocation. In Proceedings of the 6th European Starting
AI Researcher Symposium, pages 204–215. IOS Press, August 2012.

[NNRR12b] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Complexity and approx-
imability of social welfare optimization in multiagent resource allocation
(extended abstract). In Proceedings of the 11th International Joint Con-
ference on Autonomous Agents and Multiagent Systems,, pages 1287–1288.
IFAAMAS, June 2012.

[NNRR12c] N. Nguyen, T. Nguyen, M. Roos, and J. Rothe. Computational complexity
and approximability of social welfare optimization in multiagent resource
allocation. In Proceedings of the 4th International Workshop on Computa-
tional Social Choice, pages 335–346, 2012.

[NR] T. Nguyen and J. Rothe. How to decrease the degree of envy in allocations
of indivisible goods. In Proceedings of the Third International Conference
on Algorithmic Decision Theory. To appear.

[NR99] N. Nisan and A. Ronen. Algorithmic mechanism design (extended ab-
stract). In Proceedings of the 31st ACM Symposium on Theory of Comput-
ing, pages 129–140. ACM Press, May 1999.

106

Bibliography

[NR13a] T. Nguyen and J. Rothe. Envy-ratio and average-Nash social welfare opti-
mization in multiagent resource allocation. In Proceedings of the 6th Inter-
national Workshop on Optimisation in Multi-Agent Systems, pages 1–18,
May 2013.

[NR13b] T. Nguyen and J. Rothe. Envy-ratio and average-Nash social welfare op-
timization in multiagent resource allocation (extended abstract). In Pro-
ceedings of the 12th International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1139–1140. IFAAMAS, May 2013.

[NRR] T. Nguyen, M. Roos, and J. Rothe. A survey of approximability and inap-
proximability results for social welfare optimization in multiagent resource
allocation. Annals of Mathematics and Artificial Intelligence. To appear.

[NRR12] T. Nguyen, M. Roos, and J. Rothe. A survey of approximability and inap-
proximability results for social welfare optimization in multiagent resource
allocation. In Website Proceedings of the Special Session on Computational
Social Choice at the 12th International Symposium on Artificial Intelligence
and Mathematics, 2012.

[Pap95] C. Papadimitriou. Computational Complexity. Addison-Wesley, second
edition, 1995.

[Pol48] G. Polya. How to solve it. Princeton University Press, 1948.

[PW92] C. Potts and L. Wassenhove. Approximation algorithms for scheduling a
single machine to minimize total late work. Operations Research Letters,
11(5):261–353, 1992.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–
440, 1991.

[Rob01] J. Robson. Finding a maximum independent set in time O(2n/4). Technical
report, LaBRI, Université Bordeaux I, 2001.

[Rot64] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius
functions. Probability Theory and Related Fields, 2(4):340–368, 1964.

[Rot05] J. Rothe. Complexity Theory and Cryptology. An Introduction to Cryp-
tocomplexity. EATCS Texts in Theoretical Computer Science. Springer-
Verlag, 2005.

[RP85] J. Romanycia and J. Pelletier. What is heuristic? Computational Intelli-
gence, 1(2):47–58, 1985.

[RPH98] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manage-
able combinatorial auctions. Management Science, 44(8):1131–1147, 1998.

107

Bibliography

[RR10] M. Roos and J. Rothe. Complexity of social welfare optimization in mul-
tiagent resource allocation. In Proceedings of the 9th International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 641–
648. IFAAMAS, May 2010.

[RRSY07] T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact
algorithm for the domatic number problem. Information Processing Letters,
101(3):101–106, 2007.

[RSB82] S. Rassenti, V. Smith, and R. Bulfin. A combinatorial auction mechanism
for airport time slot allocation. Bell Journal of Economics, 13(2):402–417,
1982.

[RW98] J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you can.
AK Peters, 1998.

[Sah76] S. Sahni. Algorithms for scheduling independent tasks. Journal of the
ACM, 23:116–127, 1976.

[San93] T. Sandholm. An implementation of the contract net protocol based on
marginal cost calculations. In Proceedings of the 11th National Conference
on Artificial Intelligence, pages 256–262, 1993.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[Sch05] U. Schöning. Algorithmics in exponential time. In Proceedings of the 22nd
Annual Symposium on Theoretical Aspects of Computer Science, pages 36–
43, 2005.

[Sch08] D. Scheder. Guided search and a faster deterministic algorithm for 3-SAT.
In Proceedings of the 8th Latin American Symposium, pages 60–71, 2008.

[SG76] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal
of the ACM, 23(3):555–565, 1976.

[Sil04] A. Silver. An overview of heuristic solution methods. Journal of the Oper-
ational Research Society, 55(9):936–956, 2004.

[Smi80] R. Smith. The contract net protocol: High-level communication and con-
trol in a distributed problem solver. IEEE Transactions on Computers,
29:1104–1113, 1980.

[SRN03] P. Sousa, C. Ramos, and J. Neves. The fabricare scheduling prototype
suite: Agent interaction and knowledge base. Journal of Intelligent Man-
ufacturing, 14(3):441–455, 2003.

[TT77] R. Tarjan and A. Trojanowski. Finding a maximum independent set. SIAM
Journal on Computing, 6(3):537–546, 1977.

[Vaz03] V. Vazirani. Approximation Algorithms. Springer-Verlag, second edition,
2003.

108

Bibliography

[Von08] J. Vondrák. Optimal approximation for the submodular welfare problem
in the value oracle model. In Proceedings of the 40th ACM Symposium on
Theory of Computing, pages 67–74. ACM Press, July 2008.

[Woe97] G. Woeginger. A polynomial-time approximation scheme for maximiz-
ing the minimum machine completion time. Operations Research Letters,
20(4):149–154, 1997.

[Woe01] G. Woeginger. Exact algorithms for np-hard problems: A survey. In Com-
binatorial Optimization, pages 185–208, 2001.

109

