
Avoiding Crumbs: Minimizing the Number of Cuts Basics

How Many Cuts Are Needed?

Questions:

How many cuts are required to proportionally divide a cake among n

players?

How many cuts are needed to guarantee envy-freeness?

Finding answers to such questions means . . . :

. . . to save some unneeded effort:

It is more efficient if one can make do with as few cuts as possible.

. . . to find a mathematically beautiful solution to a challenging

problem.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 1 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Basics

What Does Count as a “Cut”?

So far, we distinguished between markings and actual cuts.

However, if we would maintain this distinction and would count real

cuts only and not markings, we would be able to minimize the

required number of cuts quite easily:

Instead of headily cutting pieces, the players would first make markings

only and would make actual cuts just immediately prior to assigning

the portions to the players.

The Last Diminisher protocol, for example, would then require no more

than the optimal number of n− 1 cuts for n players (only one cut per

round), although there might be many markings in every round.

⇒ We thus would have found merely the trivial solution to a trivial

problem.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 2 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Basics

What Does Count as a “Cut”?

Certainly, this would not be the meaning Steinhaus (1948) had in

mind when he wrote:

“Interesting mathematical problems arise if we are to determine the

minimal number of cuts necessary for fair division.”

Therefore, we treat markings just like actual cuts—both count when

we determine the minimal number of cuts required for fair division.

Also, we will consider finite cake-cutting protocols only.

A bounded number of cuts required for fair division does not guarantee

that the protocol is finite bounded, and not even that it is finite.

Moving-knife protocols require infinitely (even uncountably) many

decisions, but usually require n− 1 cuts only, and that is optimal.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 3 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Basics

The Minimal Number of Required Cuts

Definition (minimal number of cuts)

Let Π be a cake-cutting protocol for n players. The minimal number of

cuts required by Π is the number k(n) satisfying that:

1 Π always terminates with at most k(n) cuts (including markings), and

2 in the worst case (with respect to the players’ valuation functions), at

least k(n) cuts (including markings) are needed for Π to terminate.

Remark

That is, a cake-cutting protocol for n players requires exactly k(n)

cuts in the worst case, but may make do with fewer than that for

suitably chosen valuation functions.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 4 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Basics

The Minimal Number of Required Cuts

Remark (continued)

For example, if the valuation functions of the three players in the

Selfridge–Conway protocol are chosen so that there remains no

leftover, this protocol needs no more than merely two cuts . . .

. . . but it needs five in the worst case.

No proportional cake-cutting protocol for n ≥ 1 players can require a

minimal number of fewer than n−1 cuts: All players must receive

nonempty portions that they value to be worth at least 1/n > 0 each.

⇒ n−1 is a lower bound on the minimal number of cuts required by

proportional cake-cutting protocols.

However, this is not the best lower bound for such protocols.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 5 / 49



Avoiding Crumbs: Minimizing the Number of Cuts The One-Cut-Suffices Principle

The One-Cut-Suffices Principle

First, however, let us investigate the minimal number of cuts required

by concrete proportional cake-cutting protocols.

Let us start with the Last Diminisher protocol with three players,

Belle, Chris, and David.

Suppose that

Belle cuts the piece S1 with vBelle(S1) = 1/3

but vChris(S1)> 1/3, so Chris then trims S1 and passes the smaller

piece S2, with vChris(S2) = 1/3, on to David.

Since vDavid(S2)< 1/3, S2 goes to Chris who drops out with it.

Now, Belle and David play Cut & Choose for the reassembled

remainings of the cake, R = X −S2, which consists of two pieces,

though: A= X −S1 and B = S1−S2.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 6 / 49



Avoiding Crumbs: Minimizing the Number of Cuts The One-Cut-Suffices Principle

The One-Cut-Suffices Principle

A= X −S1

S2

B = S1−S2

Figure: One cut suffices for the division of A and B with Cut & Choose

Do both pieces, A and B , have to be cut separately?

No, one cut suffices!

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 7 / 49



Avoiding Crumbs: Minimizing the Number of Cuts The One-Cut-Suffices Principle

The One-Cut-Suffices Principle

For concreteness, suppose that in our example

vBelle(A) =
2

3
and vBelle(B) =

1

6
.

Then Belle, the cutter in Cut & Choose, ought to receive a piece of

value (1/2) · (2/3+ 1/6) = 5/12 according to her valuation function.

So she cuts the more valuable of the two pieces, A, into two parts:

A1 of value vBelle(A1) = 5/12 and

A2 of value vBelle(A2) = 2/3− 5/12 = 3/12.

By additivity, vBelle(A1) = vBelle(A2∪B) = 3/12+ 1/6 = 5/12.

David now has the choice between A1 and A2∪B.

Thus, the Last Diminisher protocol requires no more than a total of

three cuts for these valuations by the three players.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 8 / 49



Avoiding Crumbs: Minimizing the Number of Cuts The One-Cut-Suffices Principle

The One-Cut-Suffices Principle

Note, however, that this is not a worst-case scenario.

The worst case with respect to the minimal number of required cuts

would have occurred when also David would have cut in the first

round.

Thus, the minimal number of cuts required by the Last Diminisher

protocol for three players is four.

The one-cut-suffices principle can be generalized to any number of

pieces, as the following lemma shows.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 9 / 49



Avoiding Crumbs: Minimizing the Number of Cuts The One-Cut-Suffices Principle

The One-Cut-Suffices Principle

Lemma (one-cut-suffices principle, OCS)

Let S1,S2, . . . ,Sm be m given pieces. A player who values Si to be worth

si , 1≤ i ≤m, can divide S =
⋃

1≤i≤mSi in the ratio of x : y using just a

single cut, where

x+ y = s1+ s2+ · · ·+ sm.

Proof: See blackboard. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 10 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Last Diminisher Protocol

Fact

The minimal number of cuts required by the Last Diminisher protocol is

n2+n−4

2
.

Proof: See blackboard. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 11 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Modified Last Diminisher

Modify the Last Diminisher protocol as follows:

In each execution of the second step, when one piece is being passed

from one player to the next and is possibly being trimmed each time,

the last player does not trim it if it is super-proportional, and drops

out with this larger portion instead.

The first three steps of the protocol are repeated n−1 times instead

of n−2 times according to the same scheme, i.e., the last two players

do not apply the Cut & Choose protocol.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 12 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Modified Last Diminisher

Fact

The minimal number of cuts required by the modified Last Diminisher

protocol is
n(n−1)

2
.

Proof: See blackboard. ❑

Example

For n = 50 players, we have 1225 cuts.

For n = 100 players, we have 4950 cuts.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 13 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Lone Chooser Protocol

For the Lone Chooser protocol, the one-cut-suffices principle

drastically decreases the minimal number of required cuts:

Without the OCS we have

n!−1

cuts, but with it we have:

Fact

The minimal number of cuts required by the Lone Chooser protocol is

(n−1)n(2n−1)

6
.

Proof: See blackboard. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 14 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Divide & Conquer Protocol

Case 1: n = 1. If there is only one player, she rakes in the whole cake:

no cut is needed.

Case 2: n = 2. Two players apply the Cut & Choose protocol, making

one cut.

Case 3: n = 3. With three players, the divide-and-conquer idea comes

into play for the first time. This allows to recursively reduce this case

to the simpler cases given above:

Two of the three players divide the cake in the ratio of 1 : 2.

Two of the three players play Cut & Choose for a part of the

cake they both value to be worth at least 2/3.

The remaining player receives at least 1/3 in his valuation.

In total, 2+1+0= 3 cuts are enough and needed in the worst case.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 15 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Divide & Conquer Protocol

Case 4: n = 4. With four players, we again reduce to simpler cases.

Each of the first three players divides the cake into equal halves

according to their valuation functions.

The group of four players is then divided into two groups with

two players each:

Two players play Cut & Choose for a part of the cake they both

value to be worth at least 1/2.

The other two players also play Cut & Choose for a part of the

cake they both value to be worth at least 1/2.

In total, 3+1+1= 5 cuts are enough and needed in the worst case.

Case 5: n = 5. Analogously, the case can be reduced to two previous

cases, leading to 4+3+1= 8 cuts.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 16 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Divide & Conquer Protocol

In general, let D(n) denote the minimal number of cuts required by

the Divide & Conquer protocol for n players.

Being a recursive algorithm, the Divide & Conquer protocol for n

players gives rise to the following recurrences for k ≥ 2:

D(1) = 0

D(2) = 1

D(3) = 3

D(2k) = 2k −1+2D(k) (1)

D(2k+1) = 2k +D(k)+D(k+1) (2)

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 17 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Divide & Conquer Protocol

Equations (1) and (2) can be combined into just one recurrence for

n ≥ 4:

D(n) = n−1+D(⌊n/2⌋)+D(⌈n/2⌉). (3)

Recurrence (3) can be solved by induction on n, and we obtain:

D(n) = n · ⌈logn⌉−2⌈logn⌉+1.

Theorem (Even and Paz (1984))

The minimal number of cuts required by the Divide & Conquer protocol is

D(n) ∈ O(n logn).

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 18 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Divide & Conquer Protocol

n Method D(n)

1 no cut needed 0

2 Cut & Choose 1

3 2 cuts reduce to the cases 1 & 2 2+0+1 = 3

4 3 cuts reduce to the cases 2 & 2 3+1+1 = 5

5 4 cuts reduce to the cases 2 & 3 4+1+3 = 8

6 5 cuts reduce to the cases 3 & 3 5+3+3 = 11

7 6 cuts reduce to the cases 3 & 4 6+3+5 = 14

8 7 cuts reduce to the cases 4 & 4 7+5+5 = 17

9 8 cuts reduce to the cases 4 & 5 8+5+8 = 21

10 9 cuts reduce to the cases 5 & 5 9+8+8 = 25

...
...

...

n n−1 cuts reduce to the cases ⌊n/2⌋ & ⌈n/2⌉ D(n) = n ⌈logn⌉−2⌈logn⌉+1

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 19 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts for Some Proportional Protocols

Minimal Number of Cuts: Some Proportional Protocols

Table: Minimal numbers of cuts required by some proportional protocols

Number of players

Protocol 2 3 4 5 6 · · · n

Divide & Conquer 1 3 5 8 11 · · · n⌈logn⌉−2⌈logn⌉+1

Last Diminisher 1 4 8 13 19 · · · (n2+n−4)/2

Last Diminisher (modified) 1 3 6 10 15 · · · (n2−n)/2

Lone Chooser (without OCS) 1 5 23 119 719 · · · n!− 1

Lone Chooser (with OCS) 1 5 14 30 55 · · · (n−1)n(2n−1)/6

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 20 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Upper and Lower Bounds in the Robertson–Webb Model

Upper and Lower Bounds in the Robertson–Webb Model

While upper bounds on the minimal number of cuts commonly are

presented more or less informally, the proof of a lower bound on that

number requires a precise model that, in particular, specifies which

operations are allowed.

The model of Robertson and Webb allows

evaluation requests by which the protocol can gain information about

how much a certain player values a certain piece of the cake, and

cut requests by which the protocol can suggest where a certain player

ought to make a cut (or marking).

In this model, Woeginger and Sgall (2007) prove a lower bound of

Ω(n logn) for the number of such operations in any finite,

proportional cake-cutting protocol—under the condition that only

contiguous portions are assigned.
J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 21 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Upper and Lower Bounds in the Robertson–Webb Model

Upper and Lower Bounds in the Robertson–Webb Model

Without requiring this condition, Edmonds and Pruhs (2006) prove

the same lower bound of Ω(n logn) for every finite, proportional

protocol—but by “approximating” both fairness and the positions of

cuts in cut requests.

It is easy to see that the upper bound of O(n logn) remains valid

when counting both cut and evaluation requests in the analysis of the

Divide & Conquer protocol for n players.

How many cuts are required for envy-free protocols?

The finite, envy-free protocol of Brams and Taylor (1995) is not finite

bounded; its minimal number of required cuts is unbounded, too.

Aziz and Mackenzie’s (2016) finite bounded, envy-free cake-cutting

protocol for any number of players requires O(nn
nn

nn

) Robertson–Webb

operations.
J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 22 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Upper and Lower Bounds in the Robertson–Webb Model

Upper and Lower Bounds in the Robertson–Webb Model

On the other hand, Procaccia (2009) proves, again in the model of

Robertson and Webb, a lower bound of Ω(n2) for the number of cut

and evaluation requests in finite, envy-free cake-cutting protocols.

His result highlights the difference between proportionality and

envy-freeness:

An upper bound of O(n logn) contrasting with

a lower bound of Ω(n2)

indicates a qualitative discrepancy between these two concepts.

Instead of considering asymptotic rates of growth, we now focus on

the exact number of cuts required for proportionality to be

guaranteed, especially for small values of n.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 23 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Minimal Number of Cuts Required for Proportionality

Minimal Number of Cuts Required for Proportionality

Let P(n) denote the minimal number of cuts required for a finite

cake-cutting protocol to guarantee each of the n players a

proportional share. This value P(n) is not specific to a concrete

protocol, but it is defined over all finite, proportional protocols.

Recall that D(n) is the minimal number of cuts required by the

Divide & Conquer protocol.

Table: Comparison of D(n) and the best known upper bound on P(n)

Number n of players 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D(n) in Divide & Conquer 0 1 3 5 8 11 14 17 21 25 29 33 37 41 45 49

Upper bound on P(n) 0 1 3 4 6 8 13 15 18 21 24 27 33 36 40 44

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 24 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

How does one prove that a certain number of cuts (here two) are not

enough to guarantee a certain property (here proportionality)?

One would have to show that every finite cake-cutting protocol for

three players requires at least three cuts in the worst case in order to

assign a proportional share to each player.

However, this might be difficult:

On the one hand, there are infinitely many of such protocols;

on the other hand, one would also have to consider those protocols

that haven’t even been found yet.

Instead, we show that no finite protocol can guarantee all three

players more than a quarter—and thus, in particular, a third—of the

cake with only two cuts. Why “one quarter”? Because . . .

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 25 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Given: Cake X = [0,1] and players p1, p2, and p3 with valuation

functions v1, v2, and v3.

Step 1: p1 divides the cake in the ratio of 1 : 2 according to her

valuation function, thus creating pieces S1 and S2 with:

v1(S1) =
1

3
and v1(S2) =

2

3
.

Figure: Quarter protocol for three players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 26 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Step 2: Consider the following three cases.

Case 1: S2 is worth at least one half of the cake for one of p2

and p3 (say, for p2), and S1 is worth at least one

quarter of the cake for the other player (i.e., for p3).

In this case (v2(S2)≥ 1/2 and v3(S1)≥ 1/4),

S1 goes to p3, and

p1 and p2 share S2 using the Cut & Choose

protocol.

The other case (v3(S2)≥ 1/2 and v2(S1)≥ 1/4) is

treated analogously.

Figure: Quarter protocol for three players
J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 27 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Step 2 (continued):

Case 2: S2 is worth at least one half of the cake for one of p2

and p3 (say, for p2), and S1 is worth less than one

quarter of the cake for the other player (i.e., for p3).

In this case (v2(S2)≥ 1/2 and v3(S1)< 1/4),

S1 goes to p1, and

p2 and p3 share S2 using the Cut & Choose

protocol.

The other case (v3(S2)≥ 1/2 and v2(S1)< 1/4) is

treated analogously.

Figure: Quarter protocol for three players
J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 28 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Step 2 (continued):

Case 3: S2 is worth less than one half of the cake for both p2

and p3 (i.e., we have v2(S2)< 1/2 and v3(S2)< 1/2).

In this case,

S2 goes to p1, and

p2 and p3 share S1 using the Cut & Choose

protocol.

Figure: Quarter protocol for three players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 29 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Fact

The Quarter protocol for three players guarantees each of the three players

a quarter of the cake with only two cuts.

Proof: Two cuts are made in each case:

One cut is made by p1 in the first step, and

another cut is added when executing the Cut & Choose protocol in

each case of the second step.

It is easy to see that each of the three players indeed is guaranteed a

quarter of the cake. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 30 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Two Cuts Are not Enough for Three Proportional Shares

Two Cuts Are not Enough for Three Proportional Shares

Theorem

No finite cake-cutting protocol for three players guarantees each of the

players more than one quarter—and thus, in particular, one third—of the

cake with only two cuts.

Proof: See blackboard. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 31 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Three cuts are necessary to guarantee each of three players to receive

one third of the cake.

=⇒ The upper bound “3” of P(3) is exact, i.e., it coincides with the

lower bound for P(3).

Also the upper bound for P(4) is exact: A proportional division for

four players can be guaranteed with four, yet not with three cuts.

Even and Paz (1984) proposed a protocol that achieves a proportional

division for four players by four cuts in the worst case.

The Divide & Conquer protocol requires five cuts to guarantee a

proportional division for four players.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 32 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Idea behind the Even–Paz protocol:

Suppose that some player divides cake X into four pieces,

Y1, Y2, Z1, and Z2, such that

Y2 is at least as valuable as Y1 to him, and

Z1 is at least as valuable as Z2 to him.

=⇒ Y2∪Z1 is at least as valuable as one half of the cake to this player.

Hence, he would be willing to share Y2∪Z1 with anyone else using

the Cut & Choose protocol, as that would guarantee him one quarter

of the cake.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 33 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Definition

For any player pi with valuation function vi and for any two pieces of the

cake, A and B , we say that:

1 pi prefers A to B if v i (A)≥ v i (B),

2 pi strictly prefers A to B if v i (A)> v i(B), and

3 A is acceptable for pi if v i(A)≥ 1/n, where n is the number of players.

Theorem (Even and Paz (1984))

The Quarter protocol for four players guarantees each of the four players a

quarter of the cake with only four cuts.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 34 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Proof: Look at the Quarter protocol for four players below.

Given: Cake X = [0,1] and players p1, p2, p3, and p4 with

valuation functions v1, v2, v3, and v4.

Step 1: p1 divides cake X into two pieces, Y and Z , of equal value

according to his valuation function. We have:

X = Y ∪Z , Y ∩Z = /0, and

v1(Y ) = v1(Z ) = 1/2.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 35 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Step 2: Consider the following cases.

Case 1: Not all of p2, p3, and p4 strictly prefer the same piece

to the other. We thus may assume that

v2(Y )≥ 1/2,

v3(Y )≥ 1/2, and

v4(Z )≥ 1/2.

Then, p2 and p3 share Y and p1 and p4 share Z ,

both pairs using the Cut & Choose protocol.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 36 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Step 2 (continued):

Case 2: Each of p2, p3, and p4 strictly prefer the same piece to

the other. We thus may assume that v i(Z )> 1/2 for

i ∈ {2,3,4}. Then, p1 divides Y into two pieces, Y1

and Y2, of equal value according to his valuation

function. We have:

Y = Y1∪Y2, Y1∩Y2 = /0, and

v1(Y1) = v1(Y2) = 1/4.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 37 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Step 2 (continued):

Subcase 2.1: For one of p2, p3, and p4 (say, for p2), Y1 or Y2

is acceptable. (This is possible, even if we have

v i (Y )< 1/2 for each i ∈ {2,3,4}.)

Hence, v2(Yi)≥ 1/4 for i = 1 or i = 2. Then

p2 receives Yi ,

p1 receives Yj , j 6= i , and

p3 and p4 share Z using Cut & Choose.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 38 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Step 2 (continued):

Subcase 2.2: For none of p2, p3, and p4 is either of Y1 or Y2

acceptable.

However, since each of p2, p3, and p4 prefers one

of the pieces Y1 and Y2 to the other, two of

these players (say, p2 and p3) must prefer the

same (say, Y2) to the other.

=⇒ v i (Y2)≥ v i (Y1) for each i ∈ {2,3}.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 39 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Then p1 receives Y1 and drops out, while

p2, p3, and p4 share X −Y1 = Y2∪Z among

each other.

To this end, p2 divides Z into two pieces, Z1

and Z2, of equal value according to her valuation

function. We have:

Z = Z1∪Z2, Z1∩Z2 = /0, and

v2(Z1) = v2(Z2)> 1/4.

Let us assume that p3 prefers Z1 to Z2.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 40 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Step 2 (continued):

Case 2.2.1: Z2 is acceptable for p4. Then

Z2 goes to p4, and

p2 and p3 share Y2∪Z1 using Cut & Choose.

Case 2.2.2: Z2 is not acceptable for p4.

Then p4 must prefer Z1 to Z2. In this case,

Z2 goes to p2, and

p3 and p4 share Y2∪Z1 using Cut & Choose.

Figure: The Quarter protocol of Even and Paz (1984) for four players

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 41 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Why is the Quarter protocol for four players correct?

Case 2.2 is the critical one:

p1 first drops out with Y1, which is acceptable for him.

Then, p2, p3, and p4 share X −Y1 = Y2∪Z among each other.

But wait!

Didn’t we show earlier that two cuts (and we are not allowed to make

more cuts at this point) are not enough to guarantee a proportional

division among three players?

We will exploit our (partial) knowledge of what p2, p3, and p4 think

about Y1, Y2, Z1, and Z2 in Case 2.2.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 42 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Table: What do p2, p3, and p4 think about Y1, Y2, Z1, and Z2 in Case 2.2?

Y1 Y2 Z1 Z2

p2 I ♥I ♥A ♥A

p3 I ♥I ♥A

p4 I I

Key

A : acceptable (of value ≥ 1/4)

I : inacceptable (of value < 1/4)

♥ : prefers Yi to Yj or Zi to Zj

How might the still missing entries in this table look like?

To answer this question, we need to make a final case distinction.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 43 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Table: What do p2, p3, and p4 think about Y1, Y2, Z1, and Z2 in Case 2.2.1?

Y1 Y2 Z1 Z2

p2 I ♥I ♥A ♥A

p3 I ♥I ♥A

p4 I I A

All players receive a portion they consider to be acceptable.

In total, they needed only four cuts for this division.

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 44 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

Four Cuts Guarantee Four Proportional Shares

Table: What do p2, p3, and p4 think about Y1, Y2, Z1, and Z2 in Case 2.2.2?

Y1 Y2 Z1 Z2

p2 I ♥I ♥A ♥A

p3 I ♥I ♥A

p4 I I ♥A I

Also in this case all players receive a portion they each find

acceptable.

Again, only four cuts were needed. ❑

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 45 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

How Many Cuts Guarantee How Many Players Which

Share of the Cake?

We have seen that in finite cake-cutting protocols:

with one cut, two players can be guaranteed to receive at least one

half of the cake by Cut & Choose, and that is optimal, as zero cuts

obviously do not accomplish this;

with two cuts, each of three players can be guaranteed to receive

one quarter of the cake by Quarter protocol for three players, and

that is optimal, as two cuts cannot guarantee the three players to

receive a more valuable share of the cake;

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 46 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

How Many Cuts Guarantee How Many Players Which

Share of the Cake?

with three cuts, each of three players can be guaranteed to receive

one third of the cake (e.g., by the modified Last Diminisher protocol

or the Divide & Conquer protocol), and that again is optimal, as two

cuts in particular cannot guarantee three players one third of the

cake;

with four cuts, each of four players can be guaranteed to receive one

quarter of the cake by the Quarter protocol for four players, and that

is optimal since three cuts can guarantee each of four players one

sixth, but no more than one sixth of the cake.

How many cuts guarantee how many players which share of the

cake?
J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 47 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

How Many Cuts Guarantee How Many Players Which

Share of the Cake?

Denoting by M(n,k) the most valuable share of the cake that each of the

n players can be guaranteed by k cuts in a finite cake-cutting protocol, the

above results can be expressed as follows:

M(2,1) = 1/2, M(3,2) = 1/4, M(3,3) = 1/3, M(4,3) = 1/6, M(4,4) = 1/4.

Theorem (Robertson and Webb (1998))

1 M(n,n−1) = 1/(2n−2) for n ≥ 2.

2 M(3,3) = 1/3 and M(n,n) = 1/(2n−4) for n ≥ 4.

3 M(n,n+1)≥ 1/(2n−5) for n ≥ 5. without proof

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 48 / 49



Avoiding Crumbs: Minimizing the Number of Cuts Four Cuts Guarantee Four Proportional Shares

How Many Cuts Guarantee How Many Players Which

Share of the Cake?

Table: How many cuts guarantee how many players which share of the cake?

Number Number of players

of cuts 2 3 4 5 6 7 8 · · · n

n−1 1/2 1/4 1/6 1/8 1/10 1/12 1/14 · · · 1/(2n – 2)

n 1/3 1/4 1/6 1/8 1/10 1/12 · · · 1/(2n – 4)

n+1 1/5 1/7 1/9 1/11 · · · 1/(2n−5)

n+2 1/6 1/8 1/10 · · · ?

J. Rothe (HHU Düsseldorf) Cake-cutting Algorithms 49 / 49


	Avoiding Crumbs: Minimizing the Number of Cuts
	Basics
	The One-Cut-Suffices Principle
	Minimal Number of Cuts for Some Proportional Protocols
	Upper and Lower Bounds in the Robertson–Webb Model
	Minimal Number of Cuts Required for Proportionality
	Two Cuts Are not Enough for Three Proportional Shares
	Four Cuts Guarantee Four Proportional Shares


