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Abstract

In this paper we survey some applications of Scarf’s Lemma. First, we introduce the

notion of fractional core for NTU-games, which is always nonempty by the Lemma.

Stable allocation is a general solution concept for games where both the players and

their possible cooperations can have capacities. We show that the problem of finding

a stable allocation, given a finitely generated NTU-game with capacities, is always

solvable by a variant of Scarf’s Lemma. Finally, we describe the interpretation of

these results for matching games.

1 Introduction

Complex social and economic situations can be described as games where the players may
cooperate with each other. Most studies in cooperative game theory focus on the issue of
how the participants form disjoint coalitions, and sometimes also on the way the members
of coalitions share the utilities of their cooperations among themselves (in case of games
with transferable utility). However, in reality, an agent in the market (or any individual in
some social situation) may be involved in more than one cooperation at a time, moreover,
a cooperation may be performed with different intensities. For instance, an employer can
have several employees and their working hours can be different (but within some reasonable
limits).

Scarf [20] proved that every balanced NTU-game (i.e, cooperative game with non-
transferable utilities) has a nonempty core. His theorem was based on a lemma, which
became known as Scarf’s Lemma, as its importance has been recognised for its own right.

In this paper, we give a new interpretation of the fractional solutions which are obtained
by the Scarf algorithm for different settings. First we consider the original setting of the
Lemma for finitely generated NTU-games, and we describe the meaning of the output in
terms of fractional core. We show the correspondence between this notion and the concept
of fractional stable matchings for hypergraphs. We conclude Section 2 by explaining how
the normality of a hypergraph implies the nonemptiness of the core for the corresponding
NTU-games. In Section 3, we define the stable allocation problem for hypergraphs, which
corresponds to the problem of finding a fractional core for NTU-games where the players
can be involved in more than one coalition and the joint activities can be performed at
different intensity levels (up to some capacity constrains). We show that a variant of the
Scarf Lemma implies the existence of the latter solution as well. In Section 4, we apply
these results for matching games and we derive some well-known theorems in this context.
Finally, we present some important open problems and new research directions.

2 Fractional core - fractional stable matchings

In this section, first we describe Scarf’s Lemma and we give a new interpretation of the
fractional results obtained by the Lemma.
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2.1 Definitions, preliminaries

We recall the definition of n-person games with nontransferable utility (NTU-game for short).

Definition 1. An NTU-game is given by a pair (N, V ), where N = {1, 2, . . . , n} is the set
of players and V is a mapping of a set of feasible utility vectors, a subset V (S) of R

S to
each coalition of players, S ⊆ N , such that V (∅) = ∅, and for all S ⊆ N , S 6= ∅:

a) V (S) is a closed subset of R
S

b) V (S) is comprehensive, i.e. if uS ∈ V (S) and ũS ≤ uS then ũS ∈ V (S)

c) The set of vectors in V (S) in which each player in S receives no less than the maximum
that he can obtain by himself is a nonempty, bounded set.

One of the most important solution concepts is the core.

Definition 2. A utility vector uN ∈ V (N) is in the core of the game, if there exists no
coalition S ⊆ N with a feasible utility vector ũS ∈ V (S) such that uN

i < ũS
i for every player

i ∈ S. Such a coalition is called blocking coalition.

An NTU-game (N, V ) is superadditive if V (S) × V (T ) ⊆ V (S ∪ T ) for every pair of
disjoint coalitions S and T . In what follows, we restrict our attention to superadditive
games.

Partitioning games are special superadditive games. Given a set of basic coalitions
B ⊆ 2N , that contain all singletons (i.e. every single player has the right not to cooperate
with the others), a partitioning game (N, V,B) is defined as follows: if ΠB(S) denotes the
set of partitions of S into basic coalitions, then V (S) can be generated as:

V (S) = {uS ∈ R
S |∃π = {B1, B2, . . . , Bk} ∈ ΠB(S) : uS ∈ V (B1) × V (B2) × · · · × V (Bk)}

This means that uS is a feasible utility vector of S if there exist a partition π of S into
basic coalitions such that each utility vector uS|Bi

can be obtained as a feasible utility vector
by basic coalition Bi in π.

Given an NTU-game (N, V ), let U(S) be the set of Pareto optimal utility vectors of the
coalition S, i.e. uS ∈ U(S) if there exists no ũS ∈ V (S), where uS 6= ũS and uS ≤ ũS .

A utility vector uS ∈ V (S) is separable if there exist a proper partition π of S into
subcoalitions S1, S2, . . . , Sk such that uS|Si

is in V (Si) for every Si ∈ π. A utility vector
that is non-separable, Pareto-optimal and in which each player receives no less than the
maximum that he can obtain by himself is called an efficient vector. A coalition S is essential
if V (S) contains an efficient utility vector. In other words, a coalition S is essential, if its
members can obtain an efficient utility vector that is not achievable independently by its
subcoalitions. The set of essential coalitions is denoted by E(N, V ).

We say that a coalition S is not relevant if for every utility vector uS ∈ V (S) there exists
a proper subcoalition T ⊂ S such that uS |T is in V (T ). The set of relevant coalitions is
denoted by R(N, V ). The idea behind this notion is that if a non-relevant coalition S is
blocking with a utility vector uS , then one of its subcoalitions, say T1, must be also blocking
with utility vector uT1 = uS |T1

. Moreover, if T1 is not relevant or uT1 is separable, then we
can find another coalition T2 ⊂ T1, such that uT2 = uT1 |T2

= uS |T2
, an so on. Continuing

this argument, it is clear that there must be a relevant coalition Ti ⊂ S, that is blocking
with a non-separable vector uTi = uS|Ti

. This observation implies the following Proposition:

Proposition 1. A utility vector uN ∈ V (N) is in the core if and only if it is not blocked by
any relevant coalition with an efficient utility vector.



Obviously, if a coalition is not essential, then it cannot be relevant either. In a par-
titioning game, the set of essential coalitions must be a subset of the basic coalitions by
definition.

Proposition 2. For every partitioning game (N, V,B), R(N, V,B) ⊆ E(N, V,B) ⊆ B holds.

Scarf [20] observed that the previously introduced notions are purely ordinal in character:
they are invariant under a continuous monotonic transformation of the utility function of
any individual. Hence, without loss of generality, we may assume that U{i} = {0} for every
singleton, and all the efficient utility vectors are nonnegative. Moreover, the discussion can
be carried out on an abstract level with the outcomes for each individual represented by
arbitrary ordered sets, as we describe this in detail below.

Suppose that in order to obtain a particular non-separable vector uS,k in U(S), the
members of S have to perform a joint activity, say a

S,k. Let A
S denote the set of activities

that yield efficient utility vectors in U(S). The preference of a player over the possible
activities in which he can be involved is determined by the utilities that he obtains in these
activities. Formally, we suppose that a

S,k ≤i a
T,l ⇐⇒ uS,k

i ≤ uT,l
i for any pair of activities

a
S,k and a

T,l, where i ∈ S and i ∈ T .
Considering an efficient utility vector uN,l of the grandcoalition N , the non-separability

implies that uN,l corresponds to a joint activity a
N,l of the entire set of players. Otherwise,

if uN,l is separable, then uN,l can be obtained as a direct sum of independent efficient utility
vectors of essential subcoalitions that form a partition of the grandcoalition. This can be
considered as a set of independent activities of the subcoalitions. An outcome of the game,
denoted by X then can be regarded as a partition π of the players and a set of activities A

π

performed independently by the coalitions in π, so let X = (π, Aπ). An outcome X is judged
by a player i according to the activity he is involved in, denoted by ai(X). An outcome is
in the core of the game, or in other words, it is stable if there exist no blocking coalition
S and an activity a

S,k that is strictly preferred by all of its members, i.e., a
S,k >i ai(X)

for every i ∈ S. (This is equivalent to the blocking condition uN,l
i < ũS

i , if the outcome X
corresponds to the utility vector uN,l.)

uS,1

uS,2

uS,3

uS,4

uS,k

Figure 1: Approximation with finite number of efficient utility vectors.

An NTU-game is finitely generated if for every essential coalition S, U(S) contains a
finite number of vectors. Here, the preference order of a player over the set of activities, in
which he can be involved, can be represented by preference lists. As Scarf observed in [20]



and [21], a general NTU-game can be approximated by a finitely generated NTU-game (see
an illustration in Figure 1). Here, we will not discuss this question in details.

If for every essential coalition S, in a given NTU-game, U(S) contains only one single
vector, uS then an outcome of the game is simply a partition, since each essential coalition
has only one activity to perform. So here, instead of activities, each player has a preference
order over the essential coalitions in which he can be a member. These games are called
coalition formation games (cfg for short), and an outcome that is in the core of the game
is called a core-partition. The following example illustrates a cfg.

Example 1. Suppose that we are given 6 players: A, B, C, D, E and F , and 4 possible basic
coalitions with corresponding joint activities. The first activity, b (bridge) can be played by
A, B, C and D, the second one, p (poker) can be played by C, D and E. Finally, B can play
chess with C (denoted by c1) and D can play chess with F (denoted by c2). The preferences
of the players over the joint activities are as follows.

D

A

B

C

E

F

Activities Participants Players Preference lists
b : {A, B, C, D} B : b c1

p : {C, D, E} C : p b c1

c1 : {B, C} D : b p c2

c2 : {D, F}

Here, {p, {A}, {B}, {F}} is a core-partition, since b is not blocking because C prefers his
present coalition p to b, similarly, c1 is not blocking because C prefers playing poker with D
and E to playing chess with B, and c2 is not blocking because D also prefers playing poker
to playing chess with F . One can easily check that {b, {E}, {F}} is also a core-partition, but
the partition {c1, c2, {A}, {E}} is not in the core, since p and b are both blocking coalitions.

2.2 Fractional core by Scarf’s Lemma

First, we present Scarf’s Lemma [20] and then we introduce the notion of fractional core.
The following description of the Lemma is due to Aharoni and Fleiner [1] (here [n] denotes
the set of integers 1, 2, . . . , n, and δi,j = 1 if i = j and 0 otherwise).

Theorem 3 (Scarf, 1967). Let n, m be positive integers, and b be a vector in R
n
+. Also

let A = (ai,j), C = (ci,j) be matrices of dimension n × (n + m), satisfying the following
three properties: the first n columns of A form an n × n identity matrix (i.e. ai,j = δi,j

for i, j ∈ [n]), the set {x ∈ R
n+m
+ : Ax = b} is bounded, and ci,i < ci,k < ci,j for any

i ∈ [n], i 6= j ∈ [n] and k ∈ [n + m] \ [n].
Then there is a nonnegative vector x in R

n+m
+ such that Ax = b and the columns of C

that correspond to supp(x) form a dominating set, that is, for any column i ∈ [n + m] there
is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

Let the columns of A and C correspond to the efficient utility vectors (or equivalently
to some activities) of the essential coalitions in a finitely generated NTU-game as follows.
If the k-th columns of A and C correspond to the utility vector uS,l, then let ai,k be 1 if
i ∈ S and 0 otherwise, (so the k-th column of A is the membership vector of coalition S).

Furthermore, let ci,k = uS,l
i if i ∈ S and ci,k = M otherwise, where M is a sufficiently large

number. We set ci,i = u
{i}
i = 0 and ci,j = 2M if i 6= j ≤ n. Finally, let b = 1N . By applying

Scarf’s Lemma for this setting, we obtain a solution x that we call a fractional core element
of the game. We refer to the set of fractional core elements as the fractional core of the
game.



What is the meaning of a fractional core element? Let us suppose first, that a fractional
core element x is integer, so xi ∈ {0, 1} for all i. In this case we show that x gives a utility
vector uN that is in the core of the game. Let uN be the utility vector of N received by
summing up those independent essential utility vectors for which x(uS,k) = 1, then uN is
obviously in V (N) by superadditivity. To prove that uN must be in the core of the game,
let uS,k be an essential utility vector, with x(uS,k) = 0. By the statement of Scarf’s Lemma,
there must be a player i and an essential utility vector uT,l, such that i ∈ T , x(uT,l) = 1

and uS,k
i ≤ uT,l

i , so S cannot be a blocking coalition with the efficient utility vector uS,k.
In other words, the Ax = 1N condition of the solution says that x gives a partition

π of N and a set of activities A
π that are performed (we say that a

S,k is performed, i.e.
a

S,k ∈ A
π, if x(uS,k) = 1, implying that S is a coalition in partition π). Let X = (π, Aπ)

be the corresponding outcome, and let a
S,k be an activity not performed, (i.e. a

S,k /∈ A
π).

Then, by Scarf’s Lemma there must be a player i of S for which the performed activity,
ai(X) he is involved in is not worse than a

S,k, i.e., a
S,k ≤i ai(X), thus S cannot be a

blocking coalition with activity a
S,k.

In the non-integer case, we shall regard x(uS,k) as the intensity at which the activity a
S,k

is performed by coalition S. The Ax = 1N condition means that each player participates
in activities with total intensity 1, including maybe the activity that this player performs
alone. The domination condition says that for each activity, which is not performed with
intensity 1, there exists a member of the coalition who is not interested in increasing the
intensity of this activity, since he is satisfied by some other preferred activities that fill his
remaining capacity. Formally, if x(uS,k) < 1 then there must be a player i in S such that∑

aT,l≥iaS,k x(uT,l) = 1.

In Example 1, x(p) = 1

3
, x(b) = 2

3
is a fractional core element, since for each activity

there is at least one player who is not interested in increasing the intensity of that activity.
In our corresponding technical report [5] we illustrate with an example that the fractional
core of a game may admit a unique fractional core element where the intensities of certain
activities can be arbitrary small nonnegative values.

2.3 Fractional stable matching for hypergraphs

For a finitely generated NTU-game, the problem of finding a stable outcome is equivalent
to the stable matching problem (sm for short) for a hypergraph, as defined by Aharoni
and Fleiner [1]. Here, the vertices of the hypergraph correspond to the players, the edges
correspond to the efficient vectors (or to activities being performed by the players concerned),
and the preference of a vertex over the edges it is incident with comes from the preference
of the corresponding player over the activities he can be involved in. This is called a
hypergraphic preference system. A matching corresponds to a set of joint activities performed
by certain coalitions that form a partition of the grandcoalition together with the singletons
(i.e. with the vertices not covered by the matching). A matching M is stable if there exist
no blocking edge, i.e. an edge e /∈ M such for that every vertex v covered by e, either v is
unmatched in M or strictly prefers e to the edge that covers v in M . The corresponding set
of activities gives a stable outcome, since there exist no blocking coalition with an activity
that is strictly preferred by all of its members. Note that different activities performed by
the same players are represented by multiple edges in the corresponding hypergraph. A
hypergraph which represents the efficient utility vectors of a cfg is simple (i.e, does not
contain multiple edges and loops). 3

3We shall note that Aharoni and Fleiner [1] supposed in their model that the preferences of the players
are strict (i.e., no player is indifferent between any pair of activities). In the literature on stable matching,
the setting where players may have ties in their lists is referred to as stable matching problem with ties. In
this case, a matching M is (weakly) stable if it does not admit a blocking edge (where the definition of a



The notion of a fractional stable matching for an instance of sm for a hypergraph was
defined by Aharoni and Fleiner [1] as follows. A function x assigning non-negative weights
to edges of the hypergraph is called a fractional matching if

∑
v∈h x(h) ≤ 1 for every vertex

v. A fractional matching x is called stable if every edge e contains a vertex v such that∑
v∈h,e≤vh x(h) = 1. The existence of a fractional stable matching can be verified by Scarf’s

Lemma just like the existence of a fractional core element. Actually, these two notions are
basically equivalent.

To show the equivalence formally, we consider the polytope of intensity vectors {x|Ax =
1N , x ≥ 0} on the one hand, where A is the membership-matrix of the efficient utility
vectors (or the corresponding activities) of dimension n × (n + m) as defined by Scarf’s
Lemma. On the other hand, the fractional matching polytope is {x|Bx ≤ 1N , x ≥ 0}, where
B is the vertex-edge incidence matrix of the hypergraph of dimension n × m. Obviously,
A = (In|B), so the difference is only the n× n identity matrix, i.e. the membership-matrix
of the singletons. So, there is a natural one-to-one correspondence between the elements of
the two polytopes: if xm is a fractional matching of dimension m, then let x̄v = 1N − Axm

be a vector of dimension n, that gives the unfilled intensities of the players (or in other
words, the intensities of the single activities). The direct sum of these two independent
vectors, x is an intensity vector of dimension n +m, and vice versa. The stability condition
is equivalent to the domination condition of Scarf’s Lemma.

Aharoni and Fleiner [1] showed that a fractional stable matching can be assumed to be
an extremal point of the fractional matching polytope. This fact comes from a statement
similar to the following Proposition:

Proposition 4. If x is a fractional core element of a finitely generated NTU-game, and
x =

∑
αix

i, where αi > 0 for all i,
∑

αi = 1 and xi satisfies the Axi = 1N and xi ≥ 0
conditions, then each xi must be a fractional core element.

The proof of this Proposition is obvious, since supp(xi) ⊆ supp(x), that implies the
dominating property of the fractional core element.

Corollary 5. For any finitely generated NTU-game, there exists a fractional core element
that is an extremal point of the polytope {x|Ax = 1N , x ≥ 0}.

Corollary 5 implies that if, for a given finitely generated NTU-game, all the extremal
points of the above polytope are integers (or, in other words, the polytope has the integer
property) then the game has a nonempty core.

2.4 Normality implies the nonemptiness of the core

The definition of a normal hypergraph is due to Lovász [19]. If H is a hypergraph and H ′

is obtained from H by deleting edges, then H ′ is called a partial hypergraph of H . The
chromatic index χe(H) of a hypergraph H is the least number of colours sufficient to colour
the edges of H so that no two edges with the same colour have a vertex in common. Note
that the maximum degree, ∆(H) (that is, the maximum number of edges containing some
one vertex) is a lower bound for the chromatic index. A hypergraph H is normal if every
partial hypergraph H ′ of H satisfies χe(H

′) = ∆(H ′). Obviously, the normality is preserved
by adding or deleting multiple edges or loops. The following theorem of Lovász [19] gives
an equivalent description of normal hypergraphs.

blocking edge is the same as described above). However, an instance of sm with ties can be always derived
to another instance of sm (with no ties) by simply breaking the ties arbitrary, and a matching that is stable
for the derived instance is (weakly) stable for the original one. The same applies for the core and fractional
core in the context of NTU-games. In fact, the Scarf algorithm starts with a perturbation of matrix C in
the case that any player is indifferent between two activities she may be involved in (i.e., when her utilities
in these two activities are the same for her).



Theorem 6 (Lovász). The fractional matching polytope of a hypergraph H has the integer
property if and only if H is normal.

Suppose that for a finitely generated NTU-game the set of essential coalitions forms a
normal hypergraph. The hypergraph of the corresponding sm must be also normal, since
it is obtained by adding multiple edges and by removing the loops. By Theorem 6, the
fractional matching polytope, {x|Bx ≤ 1N , x ≥ 0} has the integer property, and so has
the polytope of intensity vectors, {x|Ax = 1N , x ≥ 0} as it was discussed previously. This
argument and Corollary 5 verify the following Lemma 7.

Lemma 7. If, for a finitely generated NTU-game, the set of essential coalitions, E(N, V )
forms a normal hypergraph, then the core of the game is nonempty.

By Lemma 7 and Proposition 2 the following holds.

Theorem 8. If the set of basic coalitions, B forms a normal hypergraph, then every finitely
generated NTU-game (N, V,B) has a nonempty core.

Let AB denote the membership-matrix of the set of basic coalitions B. The fact that the
integer property of the polytope {x|ABx = 1N , x ≥ 0} implies the nonemptiness of every
NTU-game (N, V,B) was proved first by Vasin and Gurvich [23], and independently, by
Kaneko and Wooders [14]. Later, Le Breton et al. [18], Kuipers [17] and Boros and Gurvich
[8] observed independently that the integer property of the polytope {x|ABx = 1N , x ≥ 0}
is equivalent to the integer property of the matching polytope {x|ABx ≤ 1N , x ≥ 0}, and to
the normality of the corresponding hypergraph.

3 Fractional b-core with capacities - stable allocations

In what follows, we introduce the notion of fractional b-core element as a solution of Scarf’s
Lemma with the original settings. Let the same matrices A and C of dimension n× (n+m)
correspond to the set of effective utility vectors (or activities) in a finitely generated NTU-
game as it was described in the previous section. The only modification is that now b is an
arbitrary vector of R

n
+ (instead of 1N ). Let x ∈ R

n+m
+ be referred to as a fractional b-core

element if x is a solution of the Scarf Lemma for the above setting.
Here, b(i) is an upper bound for the total intensity at which player i is capable to

perform activities, since
∑

i∈S x(uS,l) = b(i). The domination condition of the Lemma says

that for every activity a
T,k, there exists some player i who is not interested in increasing

the intensity of a
T,k, because his remaining intensity is filled with better activities, i.e., if

uT,k corresponds to activity a
T,k, then

∑
u

S,l
i

≥u
T,k
i

x(uS,l) = b(i).

In fact, to produce a fractional core element (in other words, a fractional 1N -core element)
with the algorithm of Scarf, we perturb not just matrix C (in case of indifferences), but
also the vector 1N , to avoid the degeneracy. The standard nondegeneracy assumption
provides that all variables associated with the n columns of a feasible basis for the equations
Ax̃ = b̃ = 1N + εN are strictly positive. Thus, the perturbation uniquely determines the
steps of Scarf algorithm. By rounding the final fractional b̃-core element x̃, a fractional core
element x is found. The following simple Lemma says that the fractional b-core element has
the scaling property.

Lemma 9. Given a finitely generated NTU-game, and a positive constant λ. Suppose that
b′ = λ · b, then x is a fractional b-core element if and only if x′ = λ ·x is a fractional b′-core
element.



Let us suppose that the intensities of the activities in the finitely generated NTU-game
are constrained by capacities. Formally, for each joint activity a

S,l and for the corresponding
utility vector uS,l, there may exist a nonnegative capacity c(uS,l) for which x(uS,l) ≤ c(uS,l)
is required.

The stable allocation problem can be defined for hypergraphs as follows. Suppose that
we are given a hypergraph H and for each vertex v a strict preference order over the edges
incident with v (again, this corresponds to the preferences of the players over the activities in
which they can be involved). Suppose, that we are given nonnegative bounds on the vertices
b : V (H) → R+ and nonnegative capacities on the edges c : E(H) → R+. A nonnegative
function x on the edges, is an allocation if x(e) ≤ c(e) for every edge e and

∑
v∈h x(h) ≤ b(v)

for every vertex v. An allocation is stable if every unsaturated edge e (i.e., every edge e with
x(e) < c(e)) contains a vertex v such that

∑
v∈h,e≤vh x(h) = b(v). In this case we say that

e is dominated at v. If every bound and capacity is integral then we refer to this problem
as the integral stable allocation problem.

Theorem 10. Every stable allocation problem for hypergraphs is solvable.

Proof. Suppose that we are given a given a hypergraph H . Let V (H) = {v1, v2, . . . , vn}
be the set of vertices and let E(H) = {e1, e2, . . . , em} be the set of edges. We define the
extended membership-matrix A, and the extended preference-matrix C of size (n + m) ×
(n + 2m) as follows.

The left part of A is an identity matrix of size (n + m) × (n + m), (i.e. ai,j = δi,j for
i, j ∈ [n + m]). At the bottom of the right side there is another identity matrix of size
m × m, so an+i,n+m+j = δi,j for i, j ∈ [m]. Finally, at the top of the right side we have the
vertex-edge incidence matrix of H (i.e. ai,n+m+j = 1 if vi ∈ ej and 0 otherwise for i ∈ [n]
and j ∈ [m]).

The top-right part of C correspond to the preference of the vertices (that is the preference
of the players over the activities). We require the following two conditions:

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej ∩ ek and ej <vi
ek;

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej \ ek.

Furthermore, suppose that cn+i,n+m+i < cn+i,n+m+j for every i 6= j ∈ [m] in the
bottom-right part of C. Finally, let the left part of C be such that it satisfies the conditions
of Scarf’s Lemma. The constant vector, b ∈ Rn+m

+ is given by the bounds and capacities,
so let bi = b(vi) for i ∈ [n] and bn+j = c(ej) for j ∈ [m].

We shall prove that the fractional core element x, obtained by Scarf’s Lemma, gives
a stable allocation, xe by simply taking the last m coordinates of x. Here, xe

j is equal
to xe(ej) that is the weight of the edge ej (or equivalently, this is the intensity at which
the corresponding activity is performed). If x̄v and x̄e are the vectors obtained by taking
the [1, . . . , n] and [n + 1, . . . , n + m] coordinates of x, then these vectors correspond to the
remaining weights of the vertices and edges (or the remaining intensities of the players and
the activities), respectively.

Obviously, xe is an allocation by Ax = b, since the first n equations preserve the∑
v∈h xe(h) ≤ b(v) condition for every vertex v, and the last m equations preserve

xe(e) ≤ c(e) for every edge e.
To prove stability, let us consider an unsaturated edge ej and let us suppose that the

corresponding dominating row by the lemma has index k. First we show, that i ∈ [n]. From
Ax = b, obviously x̄e(ek) + xe(ek) = c(ek) for every edge ek. Since xe(ej) < c(ej), then
x̄e(ej) > 0, thus the assumptions on C imply that i 6= n + j, for other i ∈ [n + m] \ [n]
the contradiction is trivial. If i ∈ [n], then e is dominated at vi, since x̄v(vi) = 0 by the
assumptions on C, and the Ax = b condition for the i-th row together with the statement
of the lemma imply

∑
vi∈h,ej≤vi

h xe(h) = b(vi).



4 Matching games

Matching games can be defined as partitioning NTU-games, where the cardinality of each
basic coalition is at most 2. For simplicity, in this section we suppose that no player is
indifferent between two efficient utility vectors, so their preferences over the joint activities
are strict. If a matching game is finitely generated, then the problem of finding an outcome
that is in the core is equivalent to a sm for a graphic preference system, where the edges of
the graph correspond to efficient utility vectors (and to joint activities).

4.1 Stable matching problem

If the graph of a matching game is simple (i.e, if it contains no multiple edges and loops)
then the problem of finding a core-partition for the resulting cfg is called stable roommates
problem. Otherwise, if the graph has multiple edges then we may refer to sm as stable
roommates problem with multiple activities.

Let us suppose the set of players N can be divided into two parts, say M and W , such
that every two-member basic coalition contains one member from each side (so if {m, w} ∈ B
then m ∈ M and w ∈ W ). In this case, we get a two-sided matching game (in the general
nonbipartite case the matching game is called one-sided).

If a two-sided matching game is finitely generated then the corresponding graphic rep-
resentation of the sm is bipartite. For bipartite graphs, the following Proposition is well-
known.

Proposition 11. Every bipartite graph is normal.

Proposition 11 and Theorem 8 imply the following result.

Theorem 12. Every finitely generated two-sided matching game has a nonempty core.

Theorem 12 was proved for every two-sided matching game, originally called central
assignment game, by Kaneko [13]. For the corresponding cfg-s, called stable marriage
problems, this result was proved by Gale and Shapley [11].

A one-sided matching game can have an empty core, even for a cfg, as Gale and Shap-
ley [11] illustrated with an example. However the half-integer property of the fractional
matching polytope implies the existence of stable half-solutions. The following statement is
due to Balinski [4].

Theorem 13. The fractional matching polytope for every graph has only half-integer ex-
tremal points.

As Aharoni and Fleiner [1] showed, Theorem 13 and Corollary 5 imply that for every
matching game there exists a so-called half-core element, that is a fractional core element x
with the half-integer property, i.e. xi ∈ {0, 1

2
, 1}.

Theorem 14. If a matching game is finitely generated then it always has a half-core element.

For cfg-s, the fact that for every instance of sm there exists a stable half-matching was
proved by Tan [22]. Finally we note that an easy consequence of Theorem 13 and Lemma
9 is that for every finitely generated matching game, there always exists an integer 2N -core
element.



4.2 Stable allocation problem for graphs

The stable allocation problem was introduced by Bäıou and Balinski [3] for bipartite graphs.
The integer version, where the allocation x is required to be integer on every edge for integer
bounds and capacities, was called the stable schedule problem by Alkan and Gale [2] (however
they considered a more general model, the case of so-called substitutable preferences).

Biró and Fleiner [6] generalised the algorithm of Bäıou and Balinski [3] for nonbipartite
graphs, resulting in a weakly polynomial algorithm that finds a half-integral stable allo-
cation for any given instance of integral stable allocation problem. Dean and Munshi [9]
strengthened this result by giving a strongly polynomial algorithm for the same problem.
But we shall note that the existence of a stable half-integer allocation is a consequence of
Theorem 10.

Theorem 15. For every integral stable allocation problem in a graph there exists a half-
integral stable allocation. If the graph is bipartite, then every integral stable allocation prob-
lem is solvable.

Proof. Suppose that we have a stable allocation x that has some weights that are not half-
integers. We create another stable allocation x′ with half-integer weights as follows. If x(e)
is not integer then let v be the vertex where e is dominated. Since b(v) is integer, there must
be another edge, f that is incident with v and has non-integer weight. Moreover, f cannot
be dominated at v. By this argument, it can be verified that the edges with non-integer
weights form vertex-disjoint cycles, moreover, in each such a cycle the fractional parts of
the weights are ε and 1 − ε alternately. If a cycle is odd, then ε must be 1

2
. If a cycle is

even, then ε can be modified to be 0 (or 1) in such a way that the obtained allocation x′

remains stable and has only half-integer weights.
If the graph is bipartite, thus has no odd cycle, then x′ has only integer weights, so x′ is

an integral stable allocation .

In [5] we give an integral stable allocation problem for a graph and we illustrate how a
half-integer stable allocation can be obtained with the Scarf algorithm.

5 Further directions

Guarantees for solvability. The original goal of Scarf [20] was to give a necessary con-
dition for the nonemptiness of the core for general NTU-games (and this condition was the
balancedness of the game). As we described in Section 3, if the coalition structure of an
NTU-game can be represented with a normal hypergraph then the core of the game is always
nonempty (regardless of the players’ preferences). The bipartite graph is an easy example
for normal hypergraphs, and so every two-sided matching game has nonempty core. But
what other games have this property? Our claim is that certain network games also have a
coalition structure where the underlying hypergraph is normal.
Understanding Scarf’s results. Scarf proved his Lemma in an algorithmic way. Is there
some deeper reasons for the correctness of the Lemma (and a more general interpretation
of the algorithm)? What is the relation of this result to other fundamental theorems, such
as the Sperner Theorem? There are some recent papers [15, 10] attempting to answer this
question, but yet, there still are many open problems regarding this issue.

Also, it would be interesting to know how the Scarf algorithm works for special games.
For instance, does the Scarf algorithm run in polynomial time for matching games?

At the beginning of the Scarf algorithm we perturb matrix C and vector b. By doing
so, the steps in the algorithm and the final output are fully determined. Can we output
every core element of a given NTU-game by using a suitable perturbation? How does the



perturbation effect the solution, we obtain by the algorithm? For stable marriage problem
we observed that using small epsilons for men and larger epsilons for women we always
get the man-optimal stable matching. Can we output each stable matching by a suitable
perturbation? Is that true that the smaller epsilon we give to a woman the better partner
she is going to get in the resulting stable matching?
Further application of Scarf Lemma. It is possible that the contribution of the par-
ticipants are not equal in a cooperation. Imagine an internal project of a company where
the hours allocated to the employees involved can be different (e.g., a project manager may
have less work load than an engineer in terms of working hours). We can facilitate this
option easily for any stable matching or stable allocation problem (that we may call stable
allocation problem with contributions). We only need to use contribution vectors rather than
membership vectors when defining matrix A in Scarf’s Lemma, and the existence of a stable
solution is guaranteed. But can we find a stable integral solution in polynomial time for,
say, two-sided matching games?
Practical applications. As Gale and Shapley [11] envisaged, stable matching problems
turned out to be very useful models for real applications in two-sided markets. Centralised
matching schemes have been established worldwide to allocate residents to hospitals, stu-
dents to schools, and so on. In most cases, a stable solution can be found by the classical
Gale-Shapley algorithm. However, there are some special features, such as the presence of
couples in the residence allocation program, that can make the problem unsolvable (or even
if a stable matching exists, the problem of finding one can be NP-hard). Although if the
ratio of the couples is relatively small in a large market then a stable matching exists with
high probability and sophisticated heuristics may be able to find such solutions (see e.g.,
[16] and [7]). A new heuristic for this problem could be based on the Scarf algorithm for a
stable allocation problem, where a hyperedge would represent an application from a couple
to a pair of hospitals. If the solution obtained by the Scarf algorithm is integral then it
would correspond to a stable matching. We illustrate this application with an example in
[5].
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