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Abstract

Tournament solutions, i.e., functions that associate with each complete and asym-
metric relation on a set of alternatives a non-empty subset of the alternatives, play
an important role within social choice theory and the mathematical social sciences
at large. Laffond et al. have shown that various tournament solutions satisfy
composition-consistency, a strong structural invariance property based on the simi-
larity of alternatives. We define the decomposition degree of a tournament as a pa-
rameter that reflects its decomposability and show that computing any composition-
consistent tournament solution is fixed-parameter tractable with respect to the de-
composition degree. This is of particular relevance for tournament solutions that are
known to be computationally intractable such as the Banks set and the tournament
equilibrium set, both of which have been proposed in the context of social choice.
Finally, we experimentally investigate the decomposition degree of two natural dis-
tributions of tournaments.

1 Introduction
Many problems in multiagent decision making can be addressed using tournament solu-
tions, i.e., functions that associate with each complete and asymmetric relation on a set of
alternatives a non-empty subset of the alternatives. Tournament solutions are most preva-
lent in social choice theory, where the binary relation is typically assumed to be given by
the simple majority rule (Moulin, 1986; Laslier, 1997). Other application areas include
multi-criteria decision analysis (Arrow and Raynaud, 1986; Bouyssou et al., 2006), zero-sum
games (Fisher and Ryan, 1995; Laffond et al., 1993; Duggan and Le Breton, 1996), coalition
formation (Brandt and Harrenstein, 2011), and argumentation theory (Dung, 1995; Dunne,
2007).

Recent years have witnessed an increasing interest in the computational complexity of
tournament solutions by the multiagent systems and theoretical computer science commu-
nities. A number of concepts such as the Banks set (Woeginger, 2003), the Slater set (Alon,
2006; Conitzer, 2006), and the tournament equilibrium set (Brandt et al., 2010) have been
shown to be computationally intractable. For others, including the minimal covering set
and the bipartisan set, algorithms that run in polynomial time but are nevertheless compu-
tationally quite demanding because they rely on linear programming, have been provided
(Brandt and Fischer, 2008). The class of all tournaments is excessively rich and it is well-
known that only a fraction of these tournaments occur in realistic settings (see, e.g., Feld
and Grofman, 1992). Therefore, an important question is whether there are natural classes
or distributions of tournaments that admit more efficient algorithms for computing specific
tournament solutions. In this paper, we study tournaments that are decomposable in a cer-
tain well-defined way. A set of alternatives forms a component if all alternatives in this set
bear the same relationship to all outside alternatives. Elements of a component can thus
be seen as variants of the same type of an alternative. Laslier (1997) has shown that every
tournament admits a unique natural decomposition into components, which may themselves
be decomposable into subcomponents. A tournament solution is composition-consistent if



it chooses the best alternatives of the best components (Laffond et al., 1996).1 In other
words, a composition-consistent tournament solution can be computed by recursively deter-
mining the winning components. All of the tournament solutions mentioned earlier except
the Slater set are composition-consistent.

In this paper, we provide a precise formalization of the recursive decomposition of tour-
naments and a detailed analysis of the speed-up that can be achieved when computing
composition-consistent tournament solutions. In particular, we define the decomposition
degree of a tournament as a parameter that reflects its decomposability. Intuitively, a low
decomposition degree indicates that the tournament admits a particularly well-behaved de-
composition and therefore allows the efficient computation of composition-consistent tourna-
ment solutions. Within our analysis, we leverage a recently proposed linear-time algorithm
for the modular decomposition of directed graphs (McConnell and de Montgolfier, 2005;
Capelle et al., 2002).

In related work, Betzler et al. (2010) proposed data reduction rules that facilitate the
computation of Kemeny rankings. One of these rules, the “Condorcet-set rule”, corresponds
to a (rather limited) special case of composition-consistency where tournaments are decom-
posed into exactly two components. Furthermore, a preprocessing technique that resembles
the one proposed in this paper has been used by Conitzer (2006) to speed up the compu-
tation of Slater rankings. Interestingly, even though Slater’s solution is not composition-
consistent, decompositions of the tournament can be exploited to identify a subset of the
optimal rankings.

Our results, on the other hand, allow us to compute complete choice sets and are appli-
cable to all composition-consistent tournament solutions, including the uncovered set (Fish-
burn, 1977; Miller, 1980), the minimal covering set (Dutta, 1988), the bipartisan set (Laffond
et al., 1993), the Banks set (Banks, 1985), the tournament equilibrium set (Schwartz, 1990),
and the minimal extending set (Brandt, 2009). The former three admit polynomial-time
algorithms whereas the latter three are computationally intractable. None of the concepts
is known to admit a linear-time algorithm.

We show that computing any composition-consistent tournament solution is fixed-
parameter tractable with respect to the decomposition degree of the tournament, i.e., there
are algorithms that are only superpolynomial in the decomposition degree. We conclude
the paper with an extensive investigation of the decomposition degree of two natural dis-
tributions of tournaments. The first one is a well-studied model model that assumes the
existence of a true linear ordering of the alternatives that has been perturbed by binary
random inversions. The other one is a spatial voting model based on the proximity of voters
and alternatives in a multi-dimensional space.

2 Preliminaries
In this section, we provide the terminology and notation required for our results (see Laslier
(1997) for an excellent overview of tournament solutions and their properties).

2.1 Tournaments
Let X be a universe of alternatives. For notational convenience we assume that N ⊆ X. The
set of all non-empty finite subsets of X will be denoted by F(X). A (finite) tournament T is
a pair (A,�), where A ∈ F(X) and � is an asymmetric and complete (and thus irreflexive)

1Composition-consistency is related to cloning-consistency, which was introduced by Tideman (1987) in
the context of social choice.



binary relation on X, usually referred to as the dominance relation.2 Intuitively, a � b
signifies that alternative a is preferable to b. The dominance relation can be extended to
sets of alternatives by writing A � B when a � b for all a ∈ A and b ∈ B.3 We further write
T (X) for the set of all tournaments on X. The order |T | of a tournament T = (A,�) refers
to its number of alternatives |A|. Finally, a tournament isomorphism of two tournaments
T = (A,�) and T ′ = (A′,�′) is a bijective mapping π : A→ A′ such that a � b if and only
if π(a) �′ π(b).

2.2 Components and Decompositions
An important structural concept in the context of tournaments is that of a component. A
component is a subset of alternatives that bear the same relationship to all alternatives not
in the set.

Definition 1. Let T = (A,�) be a tournament. A non-empty subset B of A is a component
of T if for all a ∈ A \ B either B � a or a � B. A decomposition of T is a set of pairwise
disjoint components {B1, . . . , Bk} of T such that A =

⋃k
i=1Bi.

The null decomposition of a tournament T = (A,�) is {A}; the trivial decomposition
consists of all singletons of A. Any other decomposition is called proper. A tournament
is said to be decomposable if it admits a proper decomposition. Given a particular de-
composition, the summary of a tournament is defined as the tournament on the individual
components rather than the alternatives.

Definition 2. Let T = (A,�) be a tournament and B̃ = {B1, . . . , Bk} a decomposition of
T . The summary of T with respect to B̃ is defined as T̃ = ({1, . . . , k}, �̃), where

i �̃ j if and only if Bi � Bj .

A tournament is called reducible if it admits a decomposition into two components.
Otherwise, it is irreducible. Laslier (1997) has shown that there exist a natural unique way
to decompose any tournament. Call a decomposition B̃ finer than another decomposition
B̃′ if B̃ 6= B̃′ and for each B ∈ B̃ there exists B′ ∈ B̃′ such that B ⊆ B′. B̃′ is said to be
coarser than B̃. A decomposition is minimal if its only coarser decomposition is the null
decomposition.

Proposition 1 (Laslier (1997)). Every irreducible tournament with more than one alterna-
tive admits a unique minimal decomposition.

This is obviously not true for reducible tournaments, as witnessed by the tournament
T = ({1, 2, 3},�) with 1 � 2, 1 � 3, and 2 � 3, which admits two minimal decompositions,
namely {{1}, {2, 3}} and {{1, 2}, {3}}. Nevertheless, there is a unique way to decompose
any reducible tournament. A scaling decomposition is a decomposition with a transitive
summary.

Proposition 2 (Laslier (1997)). Every reducible tournament admits a unique scaling de-
composition such that each component is irreducible.

This scaling decomposition into irreducible components is also the finest scaling decom-
position.

2This definition slightly diverges from the common graph-theoretic definition where � is defined on A
rather than X. However, it facilitates the sound definition of tournament solutions.

3To avoid cluttered notation, we omit the curly braces if one of the sets is a singleton, i.e., we write
a � B instead of the more cumbersome {a} � B.



2.3 Tournament Solutions
A maximal element of a tournament T = (A,�) is an alternative that is not dominated by
any other alternative. Due to the asymmetry of the dominance relation, there can be at
most one maximal element, which then also constitutes a maximum. Let max(T ) denote
the function that yields the empty set or the maximum whenever one exists, i.e.,

max(T ) = {a ∈ A : a � b for all b ∈ A \ {a}}.

In social choice theory, the maximum of a tournament given by a majority relation is com-
monly referred to as the Condorcet winner.

Since the dominance relation may contain cycles and thus fail to have a maximal element,
a variety of concepts have been suggested to take over the role of singling out the “best”
alternatives of a tournament. Formally, a tournament solution S is defined as a function
that associates with each tournament T = (A,�) a non-empty subset S(T ) of A. Following
Laslier (1997), we require a tournament solution to be independent of alternatives outside
the tournament, invariant under tournament isomorphisms, and to select the maximum
whenever it exists.

Definition 3. A tournament solution is a function S : T (X)→ F(X) such that

(i) S(T ) ⊆ A for all tournaments T = (A,�);

(ii) S(T ) = S(T ′) for all tournaments T = (A,�) and T ′ = (A,�′) such that T |A = T ′|A;

(iii) S((π(A),�′)) = π(S((A,�))) for all tournaments (A,�), (A′,�′), and every tourna-
ment isomorphism π : A→ A′ of (A,�) and (A′,�′); and

(iv) S(T ) = max(T ) whenever max(T ) 6= ∅.

A tournament solution is composition-consistent if it chooses the “best” alternatives from
the “best” components (Laffond et al., 1996).

Definition 4. A tournament solution S is composition-consistent if for all tournaments T
and T̃ such that T̃ is the summary of T with respect to some decomposition {B1, . . . , Bk},

S(T ) =
⋃

i∈S(T̃ )

S(T |Bi
).

2.4 Fixed-Parameter Tractability and Parameterized Complexity
We briefly introduce the most basic concepts of parameterized complexity theory (see, e.g.,
Downey and Fellows, 1999; Niedermeier, 2006). In contrast to classical complexity the-
ory, where the size of problem instances is the only measure of importance, parameterized
complexity analyzes whether the hardness of a problems only depends on the size of certain
parameters. A problem with parameter k is said to be fixed-parameter tractable (or to belong
to the class FPT) if there exists an algorithm that solves the problem in time f(k) ·poly(|I|),
where |I| is the size of the input and f is some computable function independent of |I|.

For example, each (computable) problem is trivially fixed-parameter tractable with re-
spect to the parameter |I|. The crucial point is to identify a parameter that is reasonably
small in realistic instances and to devise an algorithm that is only superpolynomial in this
parameter.



3 The Decomposition Tree of a Tournament
Propositions 1 and 2 offer a straightforward method to iteratively decompose tournaments.
If the tournament is reducible, take the scaling decomposition with irreducible components.
If it is irreducible, take the minimal decomposition. The repeated application of these
decompositions leads to the decomposition tree of a tournament.

Definition 5. The decomposition tree D(T ) of a tournament T = (A,�) is defined as a
rooted tree whose nodes are non-empty subsets of A. The root of D(T ) is A and for each
node B ∈ C with |B| ≥ 2, the children of B are defined as follows:

• If T |B is reducible, the children of B are the components of a finest scaling decompo-
sition of T |B .

• If T |B is irreducible, the children of B are the components of a minimal decomposition
of T |B .

It also follows from Propositions 1 and 2 that every tournament has a unique decom-
position tree. By definition, each node in D(T ) is a component of T and each leaf is a
singleton. However, not all components of T need to appear as nodes in D(T ). An example
of a decomposition tree is provided in Figure 1.
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d e

g

b f,c

f c

Figure 1: Example tournament with corresponding decomposition tree. Nodes {f, c} and
{d,e} are reducible, all other nodes are irreducible. Curly braces are omitted to improve
readability.

An internal (i.e., non-leaf) node B of D(T ) with children B1, . . . , Bk corresponds to the
tournament TB = ({1, . . . , k}, �̃) where i �̃ j if and only if Bi � Bj , i.e., TB is the summary
of T |B with respect to the decomposition {B1, . . . , Bk}. The order of TB is thus equal to the
number of children of node B. Moreover, we call an internal node B reducible (respectively,
irreducible) if the tournament TB is reducible (respectively, irreducible).4 If B is reducible,
we assume without loss of generality that the children B1, . . . , Bk are labelled according to
their transitive summary, i.e., Bi � Bj if and only if i < j. In particular, max(TB) = {1}.

Recent results on the modular decomposition of directed graphs (Capelle et al., 2002;
McConnell and de Montgolfier, 2005) imply that the decomposition tree of a tournament
can be computed in linear time.5

Proposition 3. The decomposition tree of a tournament T can be computed in time O(|T |2).
4T |B is reducible (respectively, irreducible) if and only if its summary TB is.
5The representation of a tournament is quadratic in the number of its alternatives.



The proof consists of two steps. In the first step, a factorizing permutation of the tour-
nament is constructed. A factorizing permutation of T = (A,�) is a permutation of the
alternatives in A such that each component of T is a contiguous interval in the permuta-
tion. McConnell and de Montgolfier (2005) provide a simple algorithm that computes a
factorizing permutation of a tournament in linear time. Furthermore, there exists a fairly
complicated linear-time algorithm by Capelle et al. (2002) that, given a tournament T and
a factorizing permutation of T , computes the decomposition tree D(T ). Since the litera-
ture on composition-consistency in social choice and on modular decompositions in graph
theory is unfortunately not well-connected and for reasons of completeness, we outline both
algorithms in the Appendix.

The concept of a factorizing permutation also yields a simple way to bound the number
of nodes in the decomposition tree.

Lemma 1. The number of internal nodes in the decomposition tree of a tournament T is
at most |T | − 1.

Proof. Let σ(T ) be a factorizing permutation of T and consider a node B in D(T ). Decom-
posing B into new components (the children of B in D(T )) corresponds to making “cuts”
in σ(T ). Furthermore, each cut generates at most two new components.6 As there are
only |T | − 1 possible positions for such a cut, the maximum number of nodes in D(T ) is
1 + 2(|T | − 1) = 2|T | − 1. The bound follows from the observation that D(T ) has exactly
|T | leaves.

4 Computing Solutions via the Decomposition Tree
Let S be a composition-consistent tournament solution and consider an arbitrary tourna-
ment T = (A,�) together with its decomposition tree D(T ). Composition-consistency
implies that

S(T |B) =
⋃

i∈S(TB)

S(T |Bi
) (1)

for each internal node B in D(T ) with children B1, . . . , Bk. The solution set S(T ) can thus
be computed by starting at the root of D(T ) and iteratively applying equation 1. If B is
reducible, we immediately know that S(T |B) = S(T |B1

), since 1 is the maximum in the
transitive tournament TB . A straightforward implementation of this approach is given in
Algorithm 1.

Algorithm 1 visits each node of D(T ) at most once. The algorithm for computing
S is only invoked for tournaments TB for which B is irreducible. The order of such a
tournament TB is equal to the number of children of the node B in D(T ). The decomposition
degree of T is defined as an upper bound of this number.

Definition 6. The decomposition degree δ(T ) of a tournament T is given by

δ(T ) = max{|TB | : B is an irreducible internal node in D(T )}.

Proposition 3 implies that δ(T ) can be computed efficiently. The decomposition degree
of the example tournament in Figure 1 is 3.

Let f(n) be an upper bound on the running time of an algorithm that computes S(T )
for tournaments of order |T | ≤ n. Then, the running time of Algorithm 1 can be upper-
bounded by f(δ(T )) times the number of irreducible nodes of D(T ). We thus obtain the
following theorem.

6Cuts can be made simultaneously, in which case the number of new components per cut is smaller.



Algorithm 1 Compute S(T ) via decomposition tree
1: Compute D(T )
2: S, S′ ← ∅
3: Q← (A)
4: while Q 6= () do
5: B ← Dequeue(Q)
6: if |B| = 1 then
7: S ← S ∪B
8: else
9: if B is reducible then

10: Enqueue(Q,B1)
11: else // B is irreducible
12: for all i ∈ S(TB) do
13: Enqueue(Q,Bi)
14: return S

Theorem 1. Let S be a composition-consistent tournament solution and let f(k) be an
upper bound on the running time of an algorithm that computes S for tournaments of order
at most k. Then, S(T ) can be computed in O(n2) + f(δ) · (n − 1) time, where δ is the
decomposition degree of T and n is the order or T .

Proof. Let T be a tournament and n = |T |. Computing D(T ) requires time O(n2) (Proposi-
tion 3). We now show that Algorithm 1 computes S(T ) in time f(δ(T ))·(n−1). Correctness
follows from composition-consistency of S. The running time can be bounded as follows.
During the execution of the while-loop, each node B of D(T ) is visited at most once. If B
is reducible or a singleton, there is no further computation. If B is irreducible, S(TB) is
computed. As |TB | is upper-bounded by δ(T ), this can be done in f(δ(T )) time. Finally,
Lemma 1 shows that the number of (internal) nodes of D(T ) is at most n − 1. Summing
up, this yields a running time of O(n2) + f(δ(T )) · (n− 1).

In particular, Theorem 1 shows that the computation of S(T ) is fixed-parameter tractable
with respect to the parameter δ(T ).

To get a better understanding of this theorem, consider a composition-consistent tour-
nament solution S such that f(n) is in E = DTIME(2O(n)). This holds, for example, for
the Banks set. For given tournaments T of order n, Theorem 1 then implies that S(T ) can
be computed efficiently (i.e., in time polynomial in n) whenever δ(T ) is in O(logk n). The-
orem 1 is also applicable to tractable tournaments solutions such as the minimal covering
set and the bipartisan set. Although computing these solutions is known to be in P, exist-
ing algorithms rely on linear programming and may be too time-consuming for very large
tournaments. For both concepts, a significant speed-up can be expected for distributions of
tournaments that admit a small decomposition degree.

Generally, decomposing a tournament asymptotically never harms the running time, as
the time required for computing the decomposition tree is only linear in the input size.7

5 Experimental Results
It has been shown in the previous section that computing composition-consistent tourna-
ment solutions is fixed-parameter tractable with respect to the decomposition degree of a

7Checking whether there exists a maximum already requires O(n2) time.



tournament. While the clustering of alternatives within components has some natural ap-
peal by itself, an important question concerns the value of the decomposition degree for
reasonable and practically motivated distributions of tournaments. In this section, we will
explore this question experimentally using two probabilistic models from social choice the-
ory. Both models are based on a set of voters who entertain preferences over candidates.
Given a finite set of candidates C and an odd number of voters with linear preferences over
C, the majority tournament is defined as the tournament (C,�), where a � b if and only if
the number of voters preferring a to b is greater than the number of voters preferring b to a.

Noise model The first model we consider is a standard model in social choice theory where
it is usually attributed to Condorcet (see, e.g., Young, 1988). Condorcet assumed that there
exists a “true” ranking of the candidates and that the voters possess noisy estimates of this
ranking. In particular, he assumed that there is a probability p > 1

2 , such that for each pair
a, b of candidates, each voter ranks a and b according to the true ranking with probability
p and ranks them incorrectly with probability 1− p.

Spatial Model Spatial models of voting are well-studied objects in social choice theory
(see, e.g., Austen-Smith and Banks, 2000). For a fixed natural number d of issues, we assume
that candidates (i.e., alternatives) as well as voters are located in the space [0, 1]d. The
position of candidates and voters can be thought of as their stance on the d issues. Voters’
preferences over candidates are given by the proximity to their own position according to
the Euclidian distance. We generate tournaments by drawing the positions of candidates
and voters uniformly at random from [0, 1]d.
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Figure 2: Noise model with p = 0.55

The results of our experiments are presented in Figures 2, 3, and 4. The x-axis shows
the number of voters, which goes from 5 to 1985 in increments of 30. In order to facilitate
the comparison of results for a varying number of candidates, the y-axis is labelled with



the normalized decomposition degree, i.e., the decomposition degree divided by the number
of candidates. Each graph shows the results for a fixed number of candidates, and each
data point corresponds to the average value of 30 instances. Whenever the normalized
decomposition degree is less than one, composition-consistency can be exploited, even for
tournament solutions that already admit fast (say, linear-time) algorithms. The slower
the original algorithm, the more dramatic is the speedup obtained by capitalizing on the
decomposition tree.

Figure 2 shows the results for the noise model with parameter p = 0.55. For any number
of candidates, the decomposition degree goes to zero when the number of voters grows. This
is not surprising because the probability that the tournament is transitive tends to 1 for
any p > 1

2 (and a transitive tournament T has δ(T ) = 0). Interestingly, the decomposition
degree drops abruptly when a certain number of voters is reached.
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Figure 3: Spatial model with d = 2

Figures 3 and 4 show the results for the spatial model for dimensions d = 2 and d = 20.
Surprisingly, the decomposition degree does not significantly increase when moving to a
higher-dimensional space. Similar to the noise model discussed above, δ tends to 0 for
growing n because a population of voters that is evenly distributed in [0, 1]d tends to produce
transitive tournaments.

The results of our experiments show that, even for moderately-sized electorates, tour-
naments in both distributions are highly decomposable and therefore allow significantly
faster algorithms for computing composition-consistent tournament solutions. For exam-
ple, consider the two-dimensional spatial model with 150 candidates and some tournament
solution that can be computed in time 2n. For 500 voters, the (average) normalized de-
composition degree is approximately 0.5. When assuming for simplicity that the decompo-
sition tree is already given, the speed-up factor (i.e., the running time of the original algo-
rithm divided by the running time of the algorithm that exploits composition-consistency)
is 2150

275·(150−1) ≈ 2.5 · 1020.
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Figure 4: Spatial model with d = 20

6 Conclusion
In this paper, we studied the algorithmic benefits of composition-consistent tournament so-
lutions. We defined the decomposition degree of a tournament as a parameter that reflects
its decomposability. Intuitively, a low decomposition degree indicates that the tournament
admits a particularly well-behaved decomposition. Our main result states that computing
any composition-consistent tournament solution is fixed-parameter tractable with respect
to the decomposition degree. This is of particular relevance for tournament solutions that
are known to be computationally intractable such as the Banks set and the tournament
equilibrium set. For example, one corollary of our main result is that the Banks set of
a tournament can be computed efficiently whenever the decomposition degree is polylog-
arithmic in the number of alternatives. We experimentally determined the decomposition
degree of two natural distributions of tournaments stemming from social choice theory and
found that the decomposition degree in many realistic instances is surprisingly low. As a
consequence, the speedup obtained by exploiting composition-consistency when computing
tournament solutions for these instances will be quite substantial.

In future work, it would be interesting to measure the concrete effect of capitalizing
on composition-consistency on the running time of existing algorithms for specific tourna-
ment solutions. Since computing a decomposition tree requires only linear time, it is to
be expected that decomposing a tournament never hurts, and often helps. Composition-
consistency can be further exploited by parallelization and storing the solutions of small
tournaments in a lookup table.
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