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Abstract

We investigate the computational aspects ofsafe manipulation, a new model of coalitional
manipulation that was recently put forward by Slinko and White [11]. In this model, a po-
tential manipulatorv announces how he intends to vote, and some of the other voterswhose
preferences coincide with those ofv may follow suit. Depending on the number of followers,
the outcome could be better or worse forv than the outcome of truthful voting. A manipu-
lative vote is calledsafeif for some number of followers it improves the outcome fromv’s
perspective, and can never lead to a worse outcome. In this paper, we study the complexity
of finding a safe manipulative vote for a number of common voting rules, including Plurality,
Borda,k-approval, and Bucklin, providing algorithms and hardnessresults for both weighted
and unweighted voters. We also propose two ways to extend thenotion of safe manipulation
to the setting where the followers’ preferences may differ from those of the leader, and study
the computational properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, voting manipulation, is an active topic of current
research. While the complexity of the manipulation problemfor a single voter is quite well under-
stood (specifically, this problem is known to be efficiently solvable for most common voting rules
with the notable exception of STV [1, 2]), the more recent work has mostly focused on coalitional
manipulation, i.e., manipulation by multiple, possibly weighted voters. In contrast to the single-
voter case, coalitional manipulation tends to be hard. Indeed, it has been shown to be NP-hard for
weighted voters even when the number of candidates is bounded by a small constant [4]. For un-
weighted voters, nailing the complexity of coalitional manipulation proved to be more challenging.
However, Faliszewski et al. [5] have recently established that this problem is hard for most variants
of Copeland, and Zuckermanet al [13] showed that it is easy for Veto and Plurality with Runoff.
Further, a very recent paper [12] makes substantial progress in this direction, showing, for exam-
ple, that unweighted coalitional manipulation is hard for Maximin and Ranked Pairs, but easy for
Bucklin (see Section 2 for the definitions of these rules).

All of these papers (as well as the classic work of Bartholdi et al. [1]) assume that the set of
manipulators is given exogenously, and the manipulators are not endowed with preferences over the
entire set of candidates; rather, they simply want to get a particular candidate elected, and select
their votes based on the non-manipulators’ preferences that are publicly known. That is, this model
abstracts away the question of how the manipulating coalition forms. However, to develop a better
understanding of coalitional manipulation, it is desirable to have a plausible model of the coalition
formation process. In such a model the manipulators would start out by having the same type of
preferences as sincere voters, and then some agents—those who are not satisfied with the current
outcome and are willing to submit an insincere ballot—wouldget together and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition soas to obtain a realistic model of how
the manipulating coalition forms. In particular, it is not clear how the voters who are interested in
manipulation should identify each other, and then reach an agreement which candidate to promote.
Indeed, the latter decision seems to call for a voting procedure, and therefore is itself vulnerable
to strategic behavior. Further, even assuming that suitable coalition formation and decision-making
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procedures exist, their practical implementation may be hindered by the absence of reliable two-way
communication among the manipulators.

In a recent paper [11], Slinko and White put forward a model that provides a partial answer to
these questions. They consider a setting where a single voter v announces his manipulative voteL
(the truthful preferences of all agents are, as usual, common knowledge) to his set of associatesF ,
i.e., the voters whose true preferences coincide with thoseof v. As a result, some of the voters in
F switch to votingL, while others (as well as all voters not inF ) vote truthfully. This can happen
if, e.g.,v’s instructions are broadcast via an unreliable channel, i.e., some of the voters inF simply
do not receive the announcement, or if some voters inF consider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a public figure may announce her decision to vote
in a particular manner, and may be followed by a subset of like-minded people. That is, in this
model, the manipulating coalition always consists of voters with identical preferences (and thus
the problem of which candidate to promote is trivially resolved), and, moreover, the manipulators
always vote in the same way. Further, it relies on minimal communication, i.e., a single broadcast
message. However, due to lack of two-way communication,v does not know how many voters will
support him in his decision to voteL. Thus, he faces a dilemma: it might be the case that ifx
voters fromF follow him, then the outcome improves, while if somey 6= x voters fromF switch
to votingL, the outcome becomes even less desirable tov than the current alternative (we provide
an example in Section 2). Ifv is conservatively-minded, in such situations he would choose not to
manipulate at all. In other words, he would viewL as a successful manipulation only if (1) there
exists a subsetU ⊆ F such that if the voters inU switch to votingL, the outcome improves; (2)
for anyW ⊆ F , if the voters inW switch to votingL the outcome does not get worse. Paper [11]
calls any manipulation that satisfies (1) and (2)safe. The main result of [11] is a generalization of
the Gibbard–Satterthwaite theorem [7, 10] to safe manipulation: the authors prove that any onto,
non-dictatorial voting rule with at least 3 alternatives issafely manipulable, i.e., there exists a profile
in which at least one voter has a safe manipulation. However,paper [11] does not explore the
computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic complexity of safe manipulation, as defined
in [11]. We first formalize the relevant computational questions and discuss some basic relationships
between them. We then study the complexity of these questions for several classic voting rules, such
as Plurality, Veto,k-approval, Bucklin, and Borda, for both weighted and unweighted voters. For
instance, we show that finding a safe manipulation is easy fork-approval and for Bucklin, even if
the voters are weighted. In contrast, for Borda, finding a safe manipulation—or even checking that
a given vote is safe—turns out to be hard for weighted voters even if the number of candidates is
bounded by a small constant.

We then explore whether it is possible to extend the model of safe manipulation to settings where
the manipulator may be joined by voters whose preferences differ from his own. Indeed, in real life
a voter may follow advice to vote in a certain way if it comes from a person whose preferences are
similar (rather than identical) to hers, or simply because she thinks that voting in this manner can
be beneficial to her. For instance, in politics, a popular personality may influence many different
voters at once by announcing his decision to vote in a particular manner. We propose two ways
of formalizing this idea, which differ in their approach to defining the set of a voter’s potential
followers, and provide initial results on the complexity ofsafe manipulation in these models.

In our first extension, a manipulatorv may be followed by all voters who rank the same candi-
dates above the current winner asv does. That is, in this model a voteru may followv if any change
of outcome that is beneficial tov is also beneficial tou. We show that some of the positive algo-
rithmic results for the standard model also hold in this moregeneral setting. In our second model,
a voteru may follow a manipulatorv that proposes to voteL, if, roughly, there are circumstances
when votingL is beneficial tou. This model tends to be computationally more challenging: we
show that finding a safe strategic vote in this setting is hardeven for very simple voting rules.

We conclude the paper by summarizing our results and proposing several directions for future



research.

2 Preliminaries and Notation

An electionis given by a set ofcandidates(also referred to asalternatives) C = {c1, . . . , cm} and
a set ofvotersV = {1, . . . , n}. Each voteri is represented by hispreferenceRi, which is a total
order overC; we will also refer to total orders overC asvotes. For readability, we will sometimes
denote the orderRi by≻i. The vectorR = (R1, . . . , Rn) is called apreference profile. We say that
two votersi andj are of the sametypeif Ri = Rj ; we writeVi = {j | Rj = Ri}.

A voting ruleF is a mapping from the set of all preference profiles to the set of candidates;
if F(R) = c, we say thatc wins underF in R. A voting rule is said to beanonymousif
F(R) = F(R′), whereR′ is a preference profile obtained by permuting the entries ofR. To
simplify the presentation, in this paper we consider anonymous voting rules only. In addition, we
restrict ourselves to voting rules that are polynomial-time computable.

During the election, each voteri submits a voteLi; the outcome of the election is then given
by F(L1, . . . , Ln). We say that a voteri is truthful if Li = Ri. For anyU ⊆ V and a voteL, we
denote byR−U (L) the profile obtained fromR by replacingRi with L for all i ∈ U .

Voting rules We will now define the voting rules considered in this paper. All of these rules assign
scores to all candidates; the winner is then selected among the candidates with the highest score
using atie-breaking rule, i.e., a mappingT : 2C → C that satisfiesT (S) ∈ S. Unless specified
otherwise, we assume that the tie-breaking rule islexicographic, i.e., given a set of tied alternatives,
it selects one that is maximal with respect to a fixed ordering≻.

Given a vectorα = (α1, . . . , αm) with α1 ≥ · · · ≥ αm, thescoresα(c) of a candidatec ∈ C
under apositional scoring ruleFα is given by

∑
i∈V αj(i,c), wherej(i, c) is the position in which

voteri ranks candidatec. Many classic voting rules can be represented using this framework. Indeed,
Plurality is the scoring rule withα = (1, 0, . . . , 0), Veto(also known asAntiplurality) is the scoring
rule withα = (1, . . . , 1, 0), andBordais the scoring rule withα = (m−1, m−2, . . . , 1, 0). Further,
k-approvalis the scoring rule withα given byα1 = · · · = αk = 1, αk+1 = · · · = αm = 0; we will
also refer to(m − k)-approval ask-veto.

Bucklin rulecan be viewed as an adaptive version ofk-approval. We say thatk, 1 ≤ k ≤ m, is
theBucklin winning roundif for any j < k no candidate is ranked in topj positions by at least⌈n/2⌉
voters, and there exists some candidate that is ranked in topk positions by at least⌈n/2⌉ voters. We
say that the candidatec’s score in roundj is hisj-approval score, and hisBucklin scoresB(c) is his
k-approval score, wherek is the Bucklin winning round. TheBucklin winneris the candidate with
the highest Bucklin score. Observe that the Bucklin score ofthe Bucklin winner is at least⌈n/2⌉.

Weighted voters Our model can be extended to the situation where not all voters are equally
important by assigning an integerweightwi to each voteri. To compute the winner on a profile
(R1, . . . , Rn) under a voting ruleF given voters’ weightsw = (w1, . . . , wn), we applyF on a
modified profile which for eachi = 1, . . . , n containswi copies ofRi. As an input to our problems
we usually get avoting domain, i.e., a tupleS = 〈C, V,w,R〉, together with a specific voting rule.
Whenw = (1, . . . , 1), we say that the voters areunweighted. For eachU ⊆ V , let |U | be the
number of voters inU and letw(U) be the total weight of the voters inU .

Safe manipulation We will now formally define the notion of safe manipulation. For the purposes
of our presentation, we can simplify the definitions in [11] considerably.

As before, we assume that the voters’ true preferences are given by a preference profileR =
(R1, . . . , Rn).

Definition 1. We say that a voteL is anincentive to vote strategically, or astrategic votefor i atR
underF , if L 6= Ri and for someU ⊆ Vi we haveF(R−U (L)) ≻i F(R). Further, we say thatL



is asafe strategic votefor a voteri atR underF if L is a strategic vote atR, and for anyU ⊆ Vi

eitherF(R−U (L)) ≻i F(R) orF(R−U (L)) = F(R).

To build intuition for the notions defined above, consider the following example.

Example 1. SupposeC = {a, b, c, d}, V = {1, 2, 3, 4}, the first three voters have preference
b ≻ a ≻ c ≻ d, and the last voter has preferencec ≻ d ≻ a ≻ b. Suppose also that the voting
rule is2-approval. Under truthful voting,a andb get3 points, andc andd get1 point each. Since
ties are broken lexicographically,a wins. Now, if voter1 changes his vote toL = b ≻ c ≻ a ≻ d,
b gets3 points,a gets2 points, andc gets2 points, sob wins. Asb ≻1 a, L is a strategic vote for
1. However, it is not a safe strategic vote: if players inV1 = {1, 2, 3} all switch to votingL, thenc
gets4 points, whileb still gets3 points, so in this casec wins anda ≻1 c.

A maximalmanipulation is one where all the voters fromVi choose to voteL. We will call the
winner of such profile themaximal manipulation winnerfor L.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two natural algorithmic questions. In the defini-
tions below,F is a given voting rule and the voters are assumed to be unweighted.

• ISSAFE(F): Given a voting domain, a voteri and a linear orderL, is L a safe strategic vote
for i underF?

• EXISTSAFE(F): Given a voting domain and a voteri, can voteri make a safe strategic vote
underF?

The variants of these problems for weighted voters will be denoted, respectively, byWISSAFE(F)
and WEXISTSAFE(F). Note that, in general, it is not clear if an efficient algorithm for
(W)EXISTSAFE(F) can be used to solve (W)ISSAFE(F), or vice versa. However, if the number
of candidates is constant, (W)EXISTSAFE(F) reduces to (W)ISSAFE(F). We formulate the follow-
ing two results for weighted voters; clearly, they also apply to unweighted voters.

Proposition 1. Consider any voting ruleF . For any constantk, if |C| ≤ k, then a polynomial-time
algorithm forWISSAFE(F) can be used to solveWEXISTSAFE(F) in polynomial time.

Proof. In this casei has at mostk! = O(1) different votes, so he can try all of them.

A similar reduction exists when each voter only has polynomially many “essentially different”
votes.

Proposition 2. Consider any scoring ruleFα that satisfies either (i)αj = 0 for all j > k or (ii)
αj = 1 for all j ≤ m − k, wherek is a given constant. For any such rule, a polynomial-time
algorithm forWISSAFE(Fα) can be used to solveWEXISTSAFE(Fα) in polynomial time.

Proof. We consider case (i); case (ii) is similar. There are at mostnk = poly(n) different ways to
fill the top k positions in a vote. Further, if two votes only differ in positionsk + 1, . . . , m, they
result in the same outcome. Thus, to solveWEXISTSAFE(Fα), it suffices to runWISSAFE(Fα) on
poly(n) instances.

Observe that the class of rules considered in Proposition 2 includes Plurality and Veto, as well
ask-approval andk-veto whenk is bounded by a constant.

Further, we note that for unweighted voters it is easy to check if a given manipulation is safe.

Proposition 3. The problemISSAFE(F) is in P for any (anonymous) voting ruleF .



Proof. SetVi = {i1, . . . , is}. Since our voting rule is anonymous, it suffices to check the conditions
of Definition 1 forU ∈ {{i1}, {i1, i2}, . . . , {i1, . . . , is}}, i.e., fors ≤ n sets of voters.

Together with Propositions 1 and 2, Proposition 3 implies that the problem EXISTSAFE(F) is
in P for Plurality, Veto,k-veto andk-approval for constantk, as well as for any voting rule with a
constant number of candidates.

Note that when voters are weighted, the conclusion of Proposition 3 no longer holds. Indeed,
in this case the number of subsets ofVi that have different weights (and thus may have a different
effect on the outcome) may be exponential inn. However, it is not hard to show that the problem
remains easy when all weights are small (polynomially bounded).

4 Plurality, veto, and k-approval

We will now show that the easiness results fork-approval andk-veto extend to arbitraryk ≤ m and
weighted voters (note that the distinction betweenk-veto and(m − k)-approval only matters for
constantk).

Theorem 4. For k-approval, the problemsWISSAFE andWEXISTSAFE are inP.

Proof. Fix a voterv ∈ V . To simplify notation, we renumber the candidates so thatv’s preference
order is given byc1 ≻v . . . ≻v cm. Denotev’s truthful vote byR. Recall thatVv denotes the set of
voters who have the same preferences asv. Suppose that under truthful voting the winner iscj . For
i = 1, . . . , m, let si(R

′) denote thek-approval score ofci given a profileR′, and setsi = si(R).
We start by proving a useful characterization of safe strategic votes fork-approval.

Lemma 1. A voteL is a safe strategic vote forv if and only if the winner inR−Vv
(L) is a candidate

ci with i < j.

Proof. Suppose thatL is a safe strategic vote forv. Then there exists ani < j and aU ⊆ Vv such
that the winner inR−U (L) is ci. It must be the case that each switch fromR to L increasesci’s
score or decreasescj ’s score: otherwiseci cannot beatcj after the voters inU change their vote
from R to L. Therefore, ifci beatscj when the preference profile isR−U (L), it continues to beat
cj after the remaining voters inVv switch, i.e., when the preference profile isR−Vv

(L). Hence, the
winner inR−Vv

(L) is notcj ; sinceL is safe, this means that the winner inR−Vv
(L) is cℓ for some

ℓ < j.
For the opposite direction, suppose that the winner inR−Vv

(L) is ci for somei < j. Note that
if two candidates gain points when some subset of voters switches fromR to L, they both gain the
same number of points; the same holds if both of them lose points.

Now, if j > k, a switch fromR to L does not lower the score ofcj , so it must increase the score
of ci for it to be the maximal manipulation winner. Further, if a switch fromR to L grants points to
somecℓ 6= ci, then eithersℓ < si or sℓ = si and the tie-breaking rule favorsci overcℓ: otherwise,
ci would not be the maximal manipulation winner.

Similarly, if j ≤ k, a switch fromR to L does not increase the score ofci, so it must lower
the score ofcj . Further, if somecℓ 6= ci does not lose points from a switch fromR to L, then
eithersℓ < si or sℓ = si and the tie-breaking rule favorsci overcℓ: otherwise,ci would not be the
maximal manipulation winner.

Now, consider anyU ⊆ Vv. If sj(R−U (L)) > si(R−U (L)), then cj is the winner. If
si(R−U (L)) > sj(R−U (L)), thenci is the winner. Finally, supposesi(R−U (L)) = sj(R−U (L)).
By the argument above, no other candidate can have a higher score. So, suppose thatsℓ(R−U (L)) =
si(R−U (L)), and the tie-breaking rule favorscℓ overci andcj . Then this would imply thatcℓ wins
in R or R−Vv

(L) (depending on whether a switch fromR to L causescℓ to lose points), a contra-
diction. Thus, in this case, too, eitherci or cj wins.



Lemma 1 immediately implies an algorithm forWISSAFE: we simply need to check that the
input vote satisfies the conditions of the lemma. We now show how to use it to construct an algorithm
for WEXISTSAFE. We need to consider two cases.

j > k:
In this case, the voters inVv already do not approve ofcj and approve of allci, i ≤ k. Thus, no
matter how they vote, they cannot ensure that someci, i ≤ k, gets more points thancj. Hence, the
only way they can change the outcome is by approving of some candidateci, k < i < j. Further,
they can only succeed if there exists ani = k + 1, . . . , j − 1 such that eithersi + w(Vv) > sj

or si + w(Vv) = sj and the tie-breaking rule favorsci over cj . If such ani exists,v has an
incentive to manipulate by swappingc1 andci in his vote. Furthermore, it is easy to see that any
such manipulation is safe, as it only affects the scores ofc1 andci.

j ≤ k:
In this case, the voters inVv already approve of all candidates they prefer tocj , and therefore they
cannot increase the scores of the firstj − 1 candidates. Thus, their only option is to try to lower the
scores ofcj as well as those of all other candidates whose score currently matches or exceeds the
best score amongs1, . . . , sj−1.

SetCg = {c1, . . . , cj−1}, Cb = {cj, . . . , cm}. Let C0 be the set of all candidates inCg whose
k-approval score is maximal, and letsmax be thek-approval score of the candidates inC0. For any
cℓ ∈ Cb, let s′ℓ denote the number of points thatcℓ gets from all voters inV \ Vv; we haves′ℓ = sℓ

for k < ℓ ≤ m ands′ℓ = sℓ − w(Vv) for ℓ = j, . . . , k. Now, it is easy to see thatv has a safe
manipulation if and only if the following conditions hold:

• For all cℓ ∈ Cb eithers′ℓ < smax, or s′ℓ = smax and there exists a candidatec ∈ C0 such that
the tie-breaking rule favorsc overcℓ;

• There exist a setCsafe ⊆ Cb, |Csafe| = k − j + 1, such that for allcℓ ∈ Csafe eithers′ℓ +
w(Vv) < smax or s′ℓ + w(Vv) = smax and there exists a candidatec ∈ C0 such that the
tie-breaking rule favorsc overcℓ.

Note that these conditions can be easily checked in polynomial time by computingsℓ ands′ℓ for all
ℓ = 1, . . . , m.

Indeed, if such a setCsafe exists, voterv can place the candidates inCsafe in positionsj, . . . , k in
his vote; denote the resulting vote byL. Clearly, if all voters inVv vote according toL, they succeed
to elect somec ∈ C0. Thus, by Lemma 1,L is safe. Conversely, if a setCsafe with these properties
does not exist, then for any voteL 6= R the winner inR−Vv

(L) is a candidate inCb, and thus by
Lemma 1L is not safe.

We remark that Theorem 4 crucially relies on the fact that we break ties based on a fixed priority
ordering over the candidates. Indeed, it can be shown that there exists a (non-lexicographic) tie-
breaking rule such that finding a safe vote with respect tok-approval combined with this tie-breaking
rule is computationally hard (assumingk is viewed as a part of the input). As the focus of this paper
is on lexicographic tie-breaking, we omit the formal statement and the proof of this fact.

In contrast, we can show that any scoring rule with3 candidates is easy to manipulate safely,
even if the voters are weighted and arbitrary tie-breaking rules are allowed.

Theorem 5. WISSAFE(F) is in P for any voting ruleF obtained by combining a positional scoring
rule with at most three candidates with an arbitrary tie-breaking rule.

Proof. For one candidate, the statement is trivial. With two candidates, every positional scoring rule
is equivalent to Plurality, and under Plurality with two candidates no voter has an incentive to vote
strategically.

Now, suppose that|C| = 3. Consider a voteri and assume without loss of generality that
Ri = (c1, c2, c3). If F(R) = c1, theni has no incentive to vote strategically. We will now consider
the casesF(R) = c2 andF(R) = c3 separately.



1. F(R) = c2. Suppose thatL is a strategic vote fori. ThenL cannot rankc2 in top two
positions. Indeed, any such manipulation does not decreasec2’s score and does not increase
c1’s score. Thus, ifc2 had a higher score thanc1, this would still be the case no matter how
many voters inVi switch to votingL. Further, if bothc2 andc1 had top scores, thenL could
succeed only if it does not change the scores of either of them. But in this case the score of
c3 does not change either, so the outcome remains the same. Thus, it remains to consider two
cases:L = (c1, c3, c2) andL = (c3, c1, c2). Now, let c = F(R−Vi

(L)). If c = c3, L is
not safe. Further, ifc = c2, then we havec2 = F(R−U (L)) for anyU ⊆ Vi, i.e.,L is not
a strategic vote fori. Finally, if c = c1, thenL is a safe strategic vote. Indeed, suppose that
L is not safe, i.e.,F(R−U (L)) = c3 for someU ⊂ Vi. Each switch fromRi to L does not
decreasec3’s score, so in that casec3 would be a winner inR−Vi

(L), a contradiction.

2. F(R) = c3. It can be checked that ifL is a strategic vote fori, thenL has to rankc2 first, i.e.,
L ∈ {(c2, c1, c3), (c2, c3, c1)}. If F(R−Vi

(L)) = c3, by the same argument as above, there
is no incentive fori to vote forL. Otherwise,L is a safe strategic vote, sincec3 is the least
preferred candidate.

5 Bucklin and Borda

Bucklin rule is quite similar tok-approval, so we can use the ideas in the proof of Theorem 4 to de-
sign a polynomial-time algorithm for finding a safe manipulation with respect to Bucklin. However,
the proof becomes significantly more complicated.

Theorem 6. For the Bucklin rule,WEXISTSAFE is in P.

Interestingly, despite the intuition thatWISSAFE should be easier thanWEXISTSAFE, it turns
out thatWISSAFE for Bucklin is coNP-hard.

Theorem 7. For the Bucklin rule,WISSAFE is coNP-hard, even for a constant number of candi-
dates.

Proof. We give a reduction from SUBSET SUM. Recall that an instance of SUBSET SUM is given by
a set of positive integersA = {a1, . . . , as} and a positive integerK. It is a “yes”-instance if there
is a subset of indicesI ⊆ {1, . . . , s} such that

∑
i∈I ai = K and a “no”-instance otherwise. We

assume without loss of generality thatK <
∑

ai∈A ai.
Given an instance(A, K) of SUBSET SUM with |A| = s and

∑s

i=1 ai = S, we con-
struct an instance ofWISSAFE as follows. SetC = {a, b, c, x, y, z, x′, y′, z′}, and letV =
{v1, . . . , vs, u1, u2, u3, u4}. Table 1 shows the preferences and weights of each voter; observe that
the total weight of all voters is4S. We ask if the voteL = (a, c, b, x, y, z, x′, y′, z′) is a safe strate-

Table 1:

Voter Preference order Weight
vi (x, y, z, a, b, c, x′, y′, z′) ai

u1 (a, c, b, x, y, z, x′, y′, z′) 2S − K − 1
u2 (x, c, b, a, y, z, x′, y′, z′) 1
u3 (y, z, b, a, c, x, x′, y′, z′) K
u4 (x′, y′, z′, a, b, c, x, y, z) S

gic vote forv1 under Bucklin; as we will see, the answer to this question does not depend on the
tie-breaking rule.



If all voters vote sincerely, thenb wins in round3 with 2S points, and all other voters get less
that2S points in the first three rounds. Note also that the total weight of voters inC \ Vv1

that rank
a first is2S − K − 1, and the total weight of voters inC \ Vv1

that rankc second is2S − K.
Suppose that a group of votersU ⊆ Vv1

votesL. If w(U) < K, thenb remains the winner,
while if w(U) > K thena becomes the winner, as it gets the majority of votes in the first round.
Therefore,L is a strategic vote forv1. However, ifw(U) = K, a only gets2S − 1 points in any
of the first three rounds, whilec gets2S points in the second round. Therefore, in this casec wins,
i.e.,L is not safe forv1. Hence,L is a safe strategic vote forv1 if and only if no subset ofA sums
to K.

For Borda, unlikek-approval and Bucklin, both of our problems are hard when thevoters are
weighted. The proof of the following theorem is similar to that of Theorem 7.

Theorem 8. For the Borda rule,WISSAFE andWEXISTSAFE arecoNP-hard. The hardness result
holds even if there are only5 candidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [11] and assumed that the onlyvoters who may change their votes
are the ones whose preferences exactly coincide with those of the manipulator. Clearly, in real life
this assumption does not always hold. Indeed, a voter may follow a suggestion to vote in a certain
way as long as it comes from someone he trusts (e.g., a well-respected public figure), and this does
not require that this person’s preferences are completely identical to those of the voter. For example,
if both the original manipulatorv and his would-be followeru rank the current winner last, it is easy
to see that followingv’s recommendation that leads to displacing the current winner is inu’s best
interests.

In this section, we will consider two approaches to extending the notion of safe strategic voting
to scenarios where not all manipulators have identical preferences. In both cases, we define the set of
potential followers for each voter (in our second model, this set may depend on the vote suggested),
and define a voteL to be safe if, whenever a subset of potential followers votesL, the outcome
of the election does not get worse (and sometimes gets better) from the manipulator’s perspective.
However, our two models differ in the criteria they use to identify a voter’s potential followers. Due
to space constraints, all proofs in this section are omitted.

Preference-Based Extension Our first model identifies the followers of a given voter basedon
the similarities in voters’ preferences.

Fix a preference profileR and a voting ruleF , and letc be the winner under truthful voting. For
anyv ∈ V , let I(v, c) denote the set of candidates thatv ranks strictly abovec. We say that two
votersu andv aresimilar if I(u, c) = I(v, c). A similar setSv of a voterv for a given preference
profileR and a voting ruleF is given bySv = {u | I(u, c) = I(v, c)}. (The setSv depends onR
andF ; however, for readability we omitR andF from the notation).

Note that ifu andv are similar, they rankc in the same position. Further, a change of outcome
from c to another alternative is positive fromu’s perspective if and only if it is positive fromv’s per-
spective. Thus, intuitively, any manipulation that is profitable foru is also profitable forv. Observe
also that similarity is an equivalence relation, and the sets Sv are the corresponding equivalence
classes. In particular, this implies that for anyu, v ∈ V eitherSu = Sv or Su ∩ Sv = ∅.

We can now adapt Definition 1 to our setting by replacingVv with Sv.

Definition 2. A voteL is a strategic vote in the preference-based extensionfor v at R underF if
for someU ⊆ Sv we haveF(R−U (L)) ≻v F(R). Further, we say thatL is a safe strategic vote
in the preference-based extensionfor a voterv at R underF if L is a strategic vote atR underF ,
and for anyU ⊆ Sv eitherF(R−U (L)) ≻v F(R) or F(R−U (L)) = F(R).



Observe that ifL is a (safe) strategic vote forv atR underF , then it is also a (safe) strategic
vote for anyu ∈ Sv. Indeed,u ∈ Sv impliesSu = Sv and for anya ∈ C we havea ≻u F(R) if
and only ifa ≻v F(R). Note also that we do not requireL 6= Rv: indeed, in the preference-based
extensionL = Rv may be a non-trivial manipulation, as it may induce voters inSv \ {v} to switch
their preferences toRv. That is, a voter may manipulate the election simply by asking other voters
with similar preferences to vote like he does. Finally, it iseasy to see that for any voterv, the setSv

of similar voters is easy to compute.
The two computational problems considered throughout thispaper, i.e., the safety of a given ma-

nipulation and the existence of a safe manipulation remain relevant for the preference-based model.
We will refer to these problems in this setting as ISSAFEpr and EXISTSAFEpr , respectively, and
use prefixW to denote their weighted variants. The problems (W)ISSAFEpr and (W)EXISTSAFEpr

appear to be somewhat harder than their counterparts in the original model. Indeed, while voters
in Sv have similar preferences, their truthful votes may be substantially different, so it now matters
whichof the voters inSv decide to follow the manipulator (rather than justhow manyof them, as in
the original model). In particular, it is not clear if ISSAFEpr (F) is polynomial-time solvable for any
voting ruleF . However, it turns out that both of our problems are easy fork-approval, even with
weighted voters.

Theorem 9. For k-approval, the problemsWISSAFEpr andWEXISTSAFEpr are inP.

In the preference-based model, a voterv follows a recommendation to vote in a particular way
if it comes from a voter whose preferences are similar to those of v. However, this approach does
not describe settings where a voter follows a recommendation not so much because he trusts the
recommender, but for pragmatic purposes, i.e., because theproposed manipulation advances her
own goals. Clearly, this may happen even if the overall preferences of the original manipulator and
the follower are substantially different. We will now propose a model that aims to capture this type
of scenarios.

Goal-Based Extension If the potential follower’s preferences are different fromthose of the ma-
nipulator, his decision to join the manipulating coalitionis likely to depend on the specific manipu-
lation that is being proposed. Thus, in this subsection we will define the set of potential followersF
in a way that depends both on the original manipulator’s identity i and his proposed voteL, i.e., we
haveF = Fi(L). Note, however, that it is not immediately obvious how to decide whether a voter
j can benefit from followingi’s suggestion to voteL, and thus should be included in the setFi(L).
Indeed, the benefit toj depends on which other voters are in the setFi(L), which indicates that the
definition of the setFi(L) has to be self-referential.

In more detail, for a given voting ruleF , an election(C, V ) with a preference profileR, a voter
i ∈ V and a voteL, we say that a voterj is pivotal for a setU ⊆ V with respect to(i, L) if j 6∈ U ,
Rj 6= L andF(R−(U∪{j})(L)) ≻j F(R−U (L)). That is, a voterj is pivotal for a setU if when
the voters inU vote according toL, it is profitable forj to join them. Now, it might appear natural
to define the follower set for(i, L) as the set that consists ofi and all votersj ∈ V that are pivotal
with respect to(i, L) for some setU ⊆ V . However, this definition is too broad: a voter is included
as long as it is pivotal for some subsetU ⊆ V , even if the voters inU cannot possibly benefit from
votingL. To exclude such scenarios, we need to require thatU itself is also drawn from the follower
set. Formally, we say thatFi(L) is a follower setfor (i, L) if it is a maximal setF that satisfies the
following condition:

∀j ∈ F [ (j = i) ∨ (∃ U ⊆ F s. t. j is pivotal forU with respect to(i, L))] (*)

Observe that this means thatFi(L) is a fixed point of a mapping from2V to 2V , i.e., this definition
is indeed self-referential. To see that the follower set is uniquely defined for anyi ∈ V and any vote
L, note that the union of any two sets that satisfy condition (*) also satisfies (*); note also that we
always havei ∈ Fi(L).



We can now define what it means forL to be astrategic vote in the goal-based extensionand a
safe strategic vote in the goal-based extensionby replacing the conditionU ⊆ Si with U ⊆ Fi(L)
in Definition 2. We will denote the computational problems ofchecking whether a given vote is a
safe strategic vote for a given voter in the goal-based extension and whether a given voter has a safe
strategic vote in the goal-based extension by ISSAFEgl and EXISTSAFEgl , respectively, and use the
prefix W to refer to weighted versions of these problems.

Two remarks are in order. First, it may be the case that even thoughi benefits from proposing to
voteL, he is never pivotal with respect to(i, L) (this can happen, e.g., ifi’s weight is much smaller
that that of the other voters). Thus, we need to explicitly includei in the setFi(L), to avoid the
paradoxical situation wherei 6∈ Fi(L). Second, our definition of a safe vote only guarantees safety
to the original manipulator, but not to her followers. In contrast, in the preference-based extension,
any vote that is safe for the original manipulator is also safe for all similar voters.

The definition of a safe strategic vote in the goal-based extension captures a number of situations
not accounted for by the definition of a safe strategic vote inthe preference-based extension. To see
this, consider the following example.

Example 2. Consider an election with the set of candidatesC = {a, b, c, d, e}, and three voters1,
2, and3, whose preferences are given bya ≻1 b ≻1 c ≻1 d ≻1 e, e ≻2 b ≻2 a ≻2 d ≻2 c, and
d ≻3 a ≻3 b ≻3 c ≻3 e. Suppose that the voting rule is Plurality, and the ties are broken according
to the priority orderd ≻ b ≻ c ≻ e ≻ a.

Under truthful voting,d is the winner, so we haveS1 6= S2. Thus, in the preference-based
extension, a vote that ranksa first is a safe strategic vote for voter2, but a vote that ranksb first is
not. On the other hand, letL be any vote that ranksb first. ThenF1(L) = F2(L) = {1, 2}. Indeed,
if voter 1 switches to votingL, the winner is stilld, but it becomes profitable for voter2 to join her,
and vice versa. On the other hand, it is easy to see that voter3 cannot profit by votingL. It follows
that in the goal-based extensionL is a safe strategic vote for voter1.

From a practical perspective, it is plausible that in Example 2 voters1 and2 would be able
to reconcile their differences (even though they are substantial—voter1 ranks voter2’s favorite
candidate last) and jointly vote forb, as this is beneficial for both of them. Thus, at least in some
situations the model provided by the goal-based extension is intuitively more appealing. However,
computationally it is considerably harder to deal with thanthe preference-based extension.

Indeed, it is not immediately clear how to compute the setFi(L), as its definition is non-
algorithmic in nature. While one can consider all subsets ofV and check whether they satisfy
condition (*), this approach is obviously inefficient. We can avoid full enumeration if have access
to a procedureA(i, L, j, W ) that for each pair(i, L), each voterj ∈ V and each setW ⊆ V can
check if j = i or there is a setU ⊆ W such thatj is pivotal forU with respect to(i, L). Indeed,
if this is the case, we can computeFi(L) as follows. We start withW = V , runA(i, L, j, W ) for
all j ∈ W , and letW ′ to be the set of all voters for whichA(i, L, j, W ) outputs “yes”. We then set
W = W ′, and iterate this step untilW = W ′. In the end, we setFi(L) = W . The correctness of
this procedure can be proven by induction on the number of iterations and follows from the fact that
if a setW contains no subsetU that is pivotal forj, then no smaller setW ′ ⊂ W can contain such a
subset. Moreover, since each iteration reduces the size ofW , the process converges after at mostn
iterations. Thus, this algorithm runs in polynomial time ifthe procedureA(i, L, j, W ) is efficiently
implementable. We will now show that this is indeed the case for Plurality (with unweighted voters).

Theorem 10. Given an election(C, V ) with a preference profileR and unweighted voters, a ma-
nipulatori, and a voteL, we can compute the setFi(L) with respect to Plurality in time polynomial
in the input size.

We can use Theorem 10 to show that under Plurality one can determine in polynomial time
whether a given voteL is safe for a playeri, as well as find a safe strategic vote fori if one exists,
as long as the voters are unweighted.



Theorem 11. The problemsISSAFEgl andEXISTSAFEgl are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is computationally hard even for Plurality.
While this result does not immediately imply thatWISSAFEgl and WEXISTSAFEgl are also hard
for Plurality, it indicates that these problems are unlikely to be easily solvable.

Theorem 12. Given an instance(C, V,w,R) of Plurality elections, votersi, j ∈ V and a voteL,
it is NP-hard to decide whetherj ∈ Fi(L).

Just a little further afield, checking whether a given vote issafe with respect to3-approval is
computationally hard even for unweighted voters. This is incontrast with the standard model and
the preference-based extension, where safely manipulating k-approval is easy for arbitraryk.

Theorem 13. ISSAFEgl is coNP-hard for3-approval.

Thus, while the preference-based extension appears to be similar to the original model of [11]
from the computational perspective, the goal-based extension is considerably more difficult to work
with.

7 Conclusions

In this paper, we started the investigation of algorithmic complexity of safe manipulation, as defined
by Slinko and White [11]. We showed that finding a safe manipulation is easy fork-approval for an
arbitrary value ofk and for Bucklin, even with weighted voters. Somewhat surprisingly, checking
whether a given manipulation is safe appears to be a more difficult problem, at least for weighted
voters: while this problem is polynomial-time solvable fork-approval, it iscoNP-hard for Buck-
lin. For the Borda rule, both checking whether a given manipulation is safe and identifying a safe
manipulation is hard when the voters are weighted.

We also proposed two ways of extending the notion of safe manipulation to heterogeneous
groups of manipulators, and initiated the study of computational complexity of related questions.
Our first extension of the model of [11] is very simple and natural, and seems to behave similarly to
the original model from the algorithmic perspective. However, arguably, it does not capture some of
the scenarios that may occur in practice. Our second model isconsiderably richer, but many of the
associated computational problems become intractable.

A natural open question is determining the complexity of finding a safe strategic vote for voting
rules not considered in this paper, such as Copeland, RankedPairs, or Maximin. Moreover, for some
of the voting rules we have investigated, the picture given by this paper is incomplete. In particular, it
would be interesting to understand the computational complexity of finding a safe manipulation for
Borda (and, more generally, for all scoring rules) for unweighted voters. The problem for Borda is
particularly intriguing as this is perhaps the only widely studied voting rule for which the complexity
of unweighted coalitional manipulation in the standard model is not known.

Other exciting research directions include formalizing and investigating the problem of selecting
the best safe manipulation (is it the one that succeeds more often, or one that achieves better results
when it succeeds?), and extending our analysis to other types of tie-breaking rules, such as, e.g.,
randomized tie-breaking rules. However, the latter question may require modifying the notion of
a safe manipulation, as the outcome of a strategic vote becomes a probability distribution over the
alternatives.
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