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Abstract

We investigate the computational aspectsafe manipulationa new model of coalitional
manipulation that was recently put forward by Slinko and WHil1]. In this model, a po-
tential manipulatow announces how he intends to vote, and some of the other wolterse
preferences coincide with thosewmay follow suit. Depending on the number of followers,
the outcome could be better or worse iothan the outcome of truthful voting. A manipu-
lative vote is calledsafeif for some number of followers it improves the outcome frofa
perspective, and can never lead to a worse outcome. In ther,pae study the complexity
of finding a safe manipulative vote for a number of commonngtules, including Plurality,
Borda, k-approval, and Bucklin, providing algorithms and hardnessilts for both weighted
and unweighted voters. We also propose two ways to extenddtien of safe manipulation
to the setting where the followers’ preferences may diffenf those of the leader, and study
the computational properties of the resulting extensions.

1 Introduction

Computational aspects of voting, and, in particular, \@timanipulation, is an active topic of current
research. While the complexity of the manipulation probfema single voter is quite well under-
stood (specifically, this problem is known to be efficienthvable for most common voting rules
with the notable exception of STV [1, 2]), the more recentkvaas mostly focused on coalitional
manipulation, i.e., manipulation by multiple, possiblyiglged voters. In contrast to the single-
voter case, coalitional manipulation tends to be hard. édgé has been shown to be NP-hard for
weighted voters even when the number of candidates is baumga small constant [4]. For un-
weighted voters, nailing the complexity of coalitional naration proved to be more challenging.
However, Faliszewski et al. [5] have recently established this problem is hard for most variants
of Copeland, and Zuckermaat al [13] showed that it is easy for Veto and Plurality with Runoff
Further, a very recent paper [12] makes substantial pregrethis direction, showing, for exam-
ple, that unweighted coalitional manipulation is hard fog¥nin and Ranked Pairs, but easy for
Bucklin (see Section 2 for the definitions of these rules).

All of these papers (as well as the classic work of Bartholdile[1]) assume that the set of
manipulators is given exogenously, and the manipulatersar endowed with preferences over the
entire set of candidates; rather, they simply want to getriigodar candidate elected, and select
their votes based on the non-manipulators’ preferencéstkgublicly known. That is, this model
abstracts away the question of how the manipulating coalfiborms. However, to develop a better
understanding of coalitional manipulation, it is desieatd have a plausible model of the coalition
formation process. In such a model the manipulators wouald sut by having the same type of
preferences as sincere voters, and then some agents—thos&revnot satisfied with the current
outcome and are willing to submit an insincere ballot—waadtogether and decide to coordinate
their efforts.

However, it is quite difficult to formalize this intuition sas to obtain a realistic model of how
the manipulating coalition forms. In particular, it is ndéar how the voters who are interested in
manipulation should identify each other, and then reachgaeeament which candidate to promote.
Indeed, the latter decision seems to call for a voting procedand therefore is itself vulnerable
to strategic behavior. Further, even assuming that seitadilition formation and decision-making
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procedures exist, their practical implementation may beéied by the absence of reliable two-way
communication among the manipulators.

In a recent paper [11], Slinko and White put forward a modat tirovides a partial answer to
these questions. They consider a setting where a single wa@enounces his manipulative vate
(the truthful preferences of all agents are, as usual, camimowledge) to his set of associates
i.e., the voters whose true preferences coincide with tlhbse As a result, some of the voters in
F switch to votingL, while others (as well as all voters not i) vote truthfully. This can happen
if, e.g.,v's instructions are broadcast via an unreliable chanmee],some of the voters iR simply
do not receive the announcement, or if some voters @onsider it unethical to vote non-truthfully.
Such a situation is not unusual in politics, where a publieriéignay announce her decision to vote
in a particular manner, and may be followed by a subset ofrikeded people. That is, in this
model, the manipulating coalition always consists of v@t&ith identical preferences (and thus
the problem of which candidate to promote is trivially resal), and, moreover, the manipulators
always vote in the same way. Further, it relies on minimal mamication, i.e., a single broadcast
message. However, due to lack of two-way communicatiatges not know how many voters will
support him in his decision to vote. Thus, he faces a dilemma: it might be the case that if
voters fromF' follow him, then the outcome improves, while if some# = voters fromFE switch
to voting L, the outcome becomes even less desirabtettan the current alternative (we provide
an example in Section 2). if is conservatively-minded, in such situations he would &eomot to
manipulate at all. In other words, he would vidwas a successful manipulation only if (1) there
exists a subsd C F such that if the voters i/ switch to votingL, the outcome improves; (2)
foranyW C F, if the voters ini¥ switch to votingL the outcome does not get worse. Paper [11]
calls any manipulation that satisfies (1) andgadje The main result of [11] is a generalization of
the Gibbard—Satterthwaite theorem [7, 10] to safe manffmulathe authors prove that any onto,
non-dictatorial voting rule with at least 3 alternativesadely manipulable, i.e., there exists a profile
in which at least one voter has a safe manipulation. Howeegser [11] does not explore the
computational complexity of the related problems.

In the first part of this paper, we focus on algorithmic comjtieof safe manipulation, as defined
in [11]. We first formalize the relevant computational qieess and discuss some basic relationships
between them. We then study the complexity of these questirrseveral classic voting rules, such
as Plurality, Veto k-approval, Bucklin, and Borda, for both weighted and unvtsd voters. For
instance, we show that finding a safe manipulation is easy-fjpproval and for Bucklin, even if
the voters are weighted. In contrast, for Borda, finding a sadnipulation—or even checking that
a given vote is safe—turns out to be hard for weighted votees & the number of candidates is
bounded by a small constant.

We then explore whether it is possible to extend the modedfefimanipulation to settings where
the manipulator may be joined by voters whose preferendies &iom his own. Indeed, in real life
a voter may follow advice to vote in a certain way if it comesnfra person whose preferences are
similar (rather than identical) to hers, or simply because thinks that voting in this manner can
be beneficial to her. For instance, in politics, a populaspeality may influence many different
voters at once by announcing his decision to vote in a padaticnanner. We propose two ways
of formalizing this idea, which differ in their approach tefthing the set of a voter’s potential
followers, and provide initial results on the complexitysaffe manipulation in these models.

In our first extension, a manipulatormay be followed by all voters who rank the same candi-
dates above the current winnenagoes. That is, in this model a votemay follow v if any change
of outcome that is beneficial tois also beneficial ta.. We show that some of the positive algo-
rithmic results for the standard model also hold in this ngeaeral setting. In our second model,
a voteru may follow a manipulator that proposes to votg, if, roughly, there are circumstances
when votingL is beneficial tou. This model tends to be computationally more challenging: w
show that finding a safe strategic vote in this setting is leaeth for very simple voting rules.

We conclude the paper by summarizing our results and progasiveral directions for future



research.

2 Preliminaries and Notation

An electionis given by a set ofandidategalso referred to aalternative3 C = {c1,..., ¢, } and
a set ofvotersV = {1,...,n}. Each voter is represented by hisreferenceR;, which is a total
order overC'; we will also refer to total orders ovér asvotes For readability, we will sometimes
denote the ordeR; by ;. The vectofrR = (Ry, ..., R,) is called gpreference profileWe say that
two voters; and; are of the samgypeif R; = R;; we writeV; = {j | R; = R;}.

A voting rule F is a mapping from the set of all preference profiles to the §efandidates;
if #(R) = ¢, we say thatc wins underF in R. A voting rule is said to benonymousf
F(R) = F(R'), whereR' is a preference profile obtained by permuting the entrieR ofTo
simplify the presentation, in this paper we consider anamysnvoting rules only. In addition, we
restrict ourselves to voting rules that are polynomialeticomputable.

During the election, each votérsubmits a votd.;; the outcome of the election is then given
by F(L1,...,L,). We say that a voteris truthful if L, = R;. For anyU C V and a voteL, we
denote byR (L) the profile obtained frorfk by replacingR; with L forall i € U.

Voting rules We will now define the voting rules considered in this papdrofthese rules assign
scores to all candidates; the winner is then selected anf@gandidates with the highest score
using atie-breaking rulei.e., a mapping’ : 2¢ — C that satisfieg’(S) € S. Unless specified
otherwise, we assume that the tie-breaking rulexgographici.e., given a set of tied alternatives,
it selects one that is maximal with respect to a fixed ordering
Given a vectorr = (o, ..., a) With a; > -+ > a,y, thescores, (c) of a candidate € C

under apositional scoring rulefs, is given by -, ;¢ o), Wherej(i, c) is the position in which
voter; ranks candidate Many classic voting rules can be represented using thisdveork. Indeed,

Plurality is the scoring rule witlw = (1,0, ..., 0), Veto(also known ag\ntiplurality) is the scoring
rule witha = (1, ..., 1,0), andBordais the scoring rule witlw = (m—1,m—2,...,1,0). Further,
k-approvalis the scoring rule witlw givenbya; = - = ag, = 1, agr1 = - = a;, = 0; we will

also refer ta'm — k)-approval as:-veta

Bucklin rulecan be viewed as an adaptive versiorkedpproval. We say thdt, 1 < k < m, is
theBucklin winning roundf for any j < k no candidate is ranked in tgjpositions by at leagtn /2]
voters, and there exists some candidate that is ranked inpogitions by at leagtn /2] voters. We
say that the candidatés score in roundj is his j-approval score, and hBucklin scoresz(c) is his
k-approval score, wherk is the Bucklin winning round. ThBucklin winneris the candidate with
the highest Bucklin score. Observe that the Bucklin scote®@Bucklin winner is at leadin/2].

Weighted voters Our model can be extended to the situation where not all saes equally
important by assigning an integerightw; to each voter. To compute the winner on a profile
(R1,...,R,) under a voting ruleF given voters’ weightsv = (w1, ...,w,), we applyF on a
modified profile which for each= 1, ..., n containsw; copies ofR;. As an input to our problems
we usually get aoting domaini.e., a tupleS = (C, V, w, R), together with a specific voting rule.
Whenw = (1,...,1), we say that the voters atmweighted For eachU C V, let |U| be the
number of voters i/ and letw(U) be the total weight of the voters 0.

Safe manipulation We will now formally define the notion of safe manipulatiorarEhe purposes
of our presentation, we can simplify the definitions in [1Lahsiderably.

As before, we assume that the voters’ true preferences ee@ by a preference profilR =
(R17 R Rn)

Definition 1. We say that a voté is anincentive to vote strategicallpr astrategic votdor i at R
underF, if L # R; and for somd/ C V; we haveF(R_y (L)) =; F(R). Further, we say thakt



is asafe strategic votéor a voteri at R underF if L is a strategic vote @k, and for anyU C V;
eitherF(R_y(L)) =; F(R) or F(R_y(L)) = F(R).

To build intuition for the notions defined above, consider thllowing example.

Example 1. SupposeC = {a,b,c,d}, V = {1,2,3,4}, the first three voters have preference
b = a = ¢ = d, and the last voter has preference- d = a > b. Suppose also that the voting
rule is2-approval. Under truthful voting; andb get3 points, and: andd get1 point each. Since
ties are broken lexicographically,wins. Now, if voterl changes hisvote th = b > ¢ > a > d,

b gets3 points,a gets2 points, and: gets2 points, sob wins. Asb =1 a, L is a strategic vote for
1. However, it is not a safe strategic vote: if playerdin= {1, 2, 3} all switch to votingL, thenc
gets4 points, whileb still gets3 points, so in this casewins anda > c.

A maximalmanipulation is one where all the voters frafnchoose to votd.. We will call the
winner of such profile thenaximal manipulation winnefor L.

3 Computational Problems: First Observations

The definition of safe strategic voting gives rise to two naftalgorithmic questions. In the defini-
tions below,F is a given voting rule and the voters are assumed to be unteeigh

e ISSAFE(F): Given a voting domain, a votérand a linear ordeL, is L a safe strategic vote
for s underF?

e EXISTSAFE(F): Given a voting domain and a votércan voter; make a safe strategic vote
underf?

The variants of these problems for weighted voters will beoded, respectively, byl SSAFE(F)
and WEXISTSAFE(F). Note that, in general, it is not clear if an efficient algonit for
(W)EXISTSAFE(F) can be used to solveM)ISSAFE(F), or vice versa. However, if the number
of candidates is constantv EXISTSAFE(F) reduces toW)IsSAFE(F). We formulate the follow-
ing two results for weighted voters; clearly, they also gplunweighted voters.

Proposition 1. Consider any voting rulg=. For any constant, if |C| < k, then a polynomial-time
algorithm forw| SSAFE(F) can be used to solwgExISTSAFE(F) in polynomial time.

Proof. In this case has at mosk! = O(1) different votes, so he can try all of them. (|

A similar reduction exists when each voter only has polyradipimany “essentially different”
votes.

Proposition 2. Consider any scoring rule,, that satisfies either (i)y; = 0 for all j > & or (ii)
a; = 1forall j < m — k, wherek is a given constant. For any such rule, a polynomial-time
algorithm forwlsSAFE(F,,) can be used to solM@EXISTSAFE(F,, ) in polynomial time.

Proof. We consider case (i); case (ii) is similar. There are at mést poly(n) different ways to
fill the top k positions in a vote. Further, if two votes only differ in pi@nsk + 1,...,m, they
result in the same outcome. Thus, to SOIVEXISTSAFE(F,,), it suffices to rurwlISSAFE(F,) on
poly(n) instances. O

Observe that the class of rules considered in PropositiorelRdes Plurality and Veto, as well
ask-approval and:-veto whenk is bounded by a constant.
Further, we note that for unweighted voters it is easy to klifex given manipulation is safe.

Proposition 3. The problem sSAFE(F) is in P for any (anonymous) voting rulg.



Proof. SetV; = {i1,...,4s}. Since our voting rule is anonymous, it suffices to check traletions
of Definition 1 forU € {{i1}, {¢1,42},..., {i1,...,is}}, i.e., fors < n sets of voters. O

Together with Propositions 1 and 2, Proposition 3 implieg the problem EISTSAFE(F) is
in P for Plurality, Veto,k-veto andk-approval for constark, as well as for any voting rule with a
constant number of candidates.

Note that when voters are weighted, the conclusion of Piitipns3 no longer holds. Indeed,
in this case the number of subsetsiffthat have different weights (and thus may have a different
effect on the outcome) may be exponentiahinHowever, it is not hard to show that the problem
remains easy when all weights are small (polynomially baahd

4 Plurality, veto, and k-approval

We will now show that the easiness resultsfeapproval and:-veto extend to arbitrary < m and
weighted voters (note that the distinction betwéewveto and(m — k)-approval only matters for
constant).

Theorem 4. For k-approval, the problems/l SSAFE and WEXISTSAFE are in P.

Proof. Fix a voterv € V. To simplify notation, we renumber the candidates so #fspreference
orderis given by; =, ... =, ¢,. Denotev’s truthful vote byR. Recall thafi, denotes the set of
voters who have the same preferences.auppose that under truthful voting the winnee js For
i=1,...,m,lets;(R’) denote the:-approval score of; given a profileR’, and sets; = s;(R).

We start by proving a useful characterization of safe sjfateotes fork-approval.

Lemma 1. AvoteL is a safe strategic vote farif and only if the winner iR _y, (L) is a candidate
c; Withi < J-

Proof. Suppose thalk is a safe strategic vote far Then there exists ah< j and aU C V,, such
that the winner ifR_y (L) is ¢;. It must be the case that each switch fréirto L increases;’s
score or decreases’s score: otherwise; cannot beat; after the voters irU change their vote
from R to L. Therefore, ifc; beatsc; when the preference profile 58_y (L), it continues to beat
c; after the remaining voters i, switch, i.e., when the preference profiléRs_y, (L). Hence, the
winner inR_y, (L) is notc;; sincelL is safe, this means that the winnery, (L) is ¢, for some
£<j.

For the opposite direction, suppose that the winnéRin,, (L) is ¢; for somei < j. Note that
if two candidates gain points when some subset of votersbestfromR to L, they both gain the
same number of points; the same holds if both of them losetgoin

Now, if j > k, a switch fromF to L does not lower the score of, so it must increase the score
of ¢; for it to be the maximal manipulation winner. Further, if aitelv from R to L grants points to
somecy # ¢;, then eithers, < s; or sy = s; and the tie-breaking rule favors overc,: otherwise,
¢; would not be the maximal manipulation winner.

Similarly, if j < k, a switch fromR to L does not increase the score®f so it must lower
the score ot;. Further, if somer, # ¢; does not lose points from a switch frofito L, then
eithersy, < s; or sy = s; and the tie-breaking rule favoes overc,: otherwise¢; would not be the
maximal manipulation winner.

Now, consider anyy' C V,. If s;(R_y(L)) > s;(R-u(L)), thene; is the winner. If
si(R-u(L)) > s;(R-u(L)), theng; is the winner. Finally, supposg(R_y (L)) = s;(R—u(L)).
By the argument above, no other candidate can have a highrer. €0, suppose that(R_y (L)) =
si(R-u (L)), and the tie-breaking rule favoes overc; ande;. Then this would imply that, wins
in R or R_y, (L) (depending on whether a switch froRito L causes; to lose points), a contra-
diction. Thus, in this case, too, eithgror ¢; wins. O



Lemma 1 immediately implies an algorithm farl SSAFE: we simply need to check that the
input vote satisfies the conditions of the lemma. We now shmmwtb use it to construct an algorithm
for WEXISTSAFE. We need to consider two cases.
i>k
In this case, the voters ili, already do not approve @f and approve of alt;, i < k. Thus, no
matter how they vote, they cannot ensure that seme< k, gets more points thaty. Hence, the
only way they can change the outcome is by approving of somdidatec;, k < i < j. Further,
they can only succeed if there exists@an= k£ + 1,...,j — 1 such that eithes; + w(V,) > s;
or s; + w(V,) = s; and the tie-breaking rule favoks overc;. If such ani exists,v has an
incentive to manipulate by swappirg andc; in his vote. Furthermore, it is easy to see that any
such manipulation is safe, as it only affects the scores ahdc;.
i<k
In this case, the voters iWi, already approve of all candidates they prefettoand therefore they
cannot increase the scores of the fjrst 1 candidates. Thus, their only option is to try to lower the
scores ofc; as well as those of all other candidates whose score cuheriches or exceeds the
best score among, ..., s;_1.

SetCy = {c1,...,¢j—1}, Cp = {cj,...,cm }. LetCy be the set of all candidates @y, whose
k-approval score is maximal, and lg},. be thek-approval score of the candidates(iy. For any
¢ € Cy, lets) denote the number of points thatgets from all voters i \ V,; we haves, = s,
fork < ¢ < mands, = s, —w(V,) for £ = j,..., k. Now, it is easy to see thathas a safe
manipulation if and only if the following conditions hold:

e Foralle, € Gy eithers, < smax, OF's) = smax and there exists a candidate C, such that
the tie-breaking rule favorsovercy;

e There exist a selsate C Cy, |Csate]| = k£ — j + 1, such that for alk, € Csate eithers), +

w(Vy) < Smax OF s; + w(V,) = smax and there exists a candidatec C such that the
tie-breaking rule favors overcy.

Note that these conditions can be easily checked in polyaldime by computing;, ands; for all
£=1,...,m.

Indeed, if such a sef;, ¢ exists, votew can place the candidates(i,g. in positionsj, ..., kin
his vote; denote the resulting vote by Clearly, if all voters inV,, vote according td, they succeed
to elect some € Cy. Thus, by Lemma 1L is safe. Conversely, if a sét,.s. with these properties
does not exist, then for any vofe # R the winner inR_vy, (L) is a candidate ir€;, and thus by
Lemma 1L is not safe. O

We remark that Theorem 4 crucially relies on the fact that veabkties based on a fixed priority
ordering over the candidates. Indeed, it can be shown tlea¢ thxists a (hon-lexicographic) tie-
breaking rule such that finding a safe vote with respektapproval combined with this tie-breaking
rule is computationally hard (assumihgs viewed as a part of the input). As the focus of this paper
is on lexicographic tie-breaking, we omit the formal stagetrand the proof of this fact.

In contrast, we can show that any scoring rule witbandidates is easy to manipulate safely,
even if the voters are weighted and arbitrary tie-breakings are allowed.

Theorem 5. wISSAFE(F) is in P for any voting ruleF obtained by combining a positional scoring
rule with at most three candidates with an arbitrary tie-&kéng rule.

Proof. For one candidate, the statement is trivial. With two caattid, every positional scoring rule
is equivalent to Plurality, and under Plurality with two dégtates no voter has an incentive to vote
strategically.

Now, suppose thaC| = 3. Consider a votef and assume without loss of generality that
R; = (c1,¢2,¢3). If F(R) = ¢, theni has no incentive to vote strategically. We will now consider
the casesF(R) = ¢z andF(R) = c3 separately.



1. F(R) = co. Suppose thal is a strategic vote fof. ThenL cannot ranke; in top two
positions. Indeed, any such manipulation does not decrg&sscore and does not increase
c1’s score. Thus, it; had a higher score than, this would still be the case no matter how
many voters inl/; switch to votingL. Further, if bothe, ande; had top scores, theh could
succeed only if it does not change the scores of either of tH&min this case the score of
c3 does not change either, so the outcome remains the same.ififemsains to consider two
cases:L = (c1,c¢3,¢2) andL = (cs,c1,c2). Now, letc = F(R_vy,(L)). If ¢ = ¢3, L is
not safe. Further, it = ¢, then we haves, = F(R_y (L)) foranyU C V;, i.e., L is not
a strategic vote foi. Finally, if ¢ = ¢1, thenL is a safe strategic vote. Indeed, suppose that
L is not safe, i.e.F(R_y (L)) = c3 for someU C V;. Each switch fromR; to L does not
decreases’s score, so in that casg would be a winner iR _y; (L), a contradiction.

2. F(R) = cs. It can be checked that If is a strategic vote fot, thenL has to rank: first, i.e.,
L € {(c2,c1,¢3), (c2,¢3,¢1)}. If F(R_v,(L)) = cs3, by the same argument as above, there
is no incentive fori to vote for L. Otherwise,L is a safe strategic vote, sineg is the least
preferred candidate.

O

5 Bucklin and Borda

Bucklin rule is quite similar td-approval, so we can use the ideas in the proof of Theorem é-to d
sign a polynomial-time algorithm for finding a safe manipida with respect to Bucklin. However,
the proof becomes significantly more complicated.

Theorem 6. For the Bucklin rule WEXISTSAFE is in P.

Interestingly, despite the intuition thatl SSAFE should be easier thawEXISTSAFE, it turns
out thatwI sSSAFE for Bucklin is coNP-hard.

Theorem 7. For the Bucklin rule,wlsSAFE is coNP-hard, even for a constant number of candi-
dates.

Proof. We give a reduction from @& seT Sum. Recall that an instance olUBSET SuM is given by

a set of positive integerd = {ay,...,as} and a positive integeK . It is a “yes”-instance if there
is a subset of indiceg C {1,...,s} suchthaty ", ;a; = K and a “no™-instance otherwise. We
assume without loss of generality thit< »_, _ , a;.

Given an instancé A, K) of SUBSET Sum with [A| = sand) ' ,a;, = S, we con-
struct an instance oWIsSSAFE as follows. SetC = {a,b,c,z,y,2,2',y',2'}, and letV =
{v1,...,vs,u1,u2,us, us}. Table 1 shows the preferences and weights of each voteznabthat
the total weight of all voters i$S. We ask if the votd. = (a, c, b, z,y, z,2’, 3/, 2’) is a safe strate-

Table 1:
Voter Preference order Weight
v; (x,y,2,a,b,c,2" 9, 2") a;
Uy (a,¢,b,x,y,z,2",y',2") 28— K —1
U9 (z,c,b,a,y, 2,2y, 2") 1
U3 (y,z,b,a,c,2, 2"y, 2 K
Uy (',y, 2 a,b,¢,2,y, 2) S

gic vote forv; under Bucklin; as we will see, the answer to this questiorsdu# depend on the
tie-breaking rule.



If all voters vote sincerely, thehwins in round3 with 2.5 points, and all other voters get less
that2S points in the first three rounds. Note also that the total g voters inC' \ V,,, that rank
afirstis2S — K — 1, and the total weight of voters ifi \ V,,, that rankc second i2S5 — K.

Suppose that a group of voteis C V,,, votesL. If w(U) < K, thenb remains the winner,
while if w(U) > K thena becomes the winner, as it gets the majority of votes in théerinsnd.
Therefore,L is a strategic vote for;. However, ifw(U) = K, a only gets2S — 1 points in any
of the first three rounds, whilegets2S points in the second round. Therefore, in this caséns,
i.e., L is not safe fow,. Hence,L is a safe strategic vote fat if and only if no subset oA sums
to K. O

For Borda, unlikek-approval and Bucklin, both of our problems are hard whervtiters are
weighted. The proof of the following theorem is similar tatlof Theorem 7.

Theorem 8. For the Borda rulewlsSAFE and WEXISTSAFE are coNP-hard. The hardness result
holds even if there are onlycandidates.

6 Extensions of the Safe Strategic Voting Model

So far, we followed the model of [11] and assumed that the volgrs who may change their votes
are the ones whose preferences exactly coincide with thidbe enanipulator. Clearly, in real life
this assumption does not always hold. Indeed, a voter mégwi@ suggestion to vote in a certain
way as long as it comes from someone he trusts (e.g., a vegeoted public figure), and this does
not require that this person’s preferences are completelytical to those of the voter. For example,
if both the original manipulator and his would-be follower rank the current winner last, it is easy
to see that following’s recommendation that leads to displacing the current @ifsinu’s best
interests.

In this section, we will consider two approaches to extegdire notion of safe strategic voting
to scenarios where not all manipulators have identicabpegices. In both cases, we define the set of
potential followers for each voter (in our second modek #&t may depend on the vote suggested),
and define a votd. to be safe if, whenever a subset of potential followers vdtethe outcome
of the election does not get worse (and sometimes gets bitier the manipulator’s perspective.
However, our two models differ in the criteria they use taitify a voter’s potential followers. Due
to space constraints, all proofs in this section are omitted

Preference-Based Extension Our first model identifies the followers of a given voter based
the similarities in voters’ preferences.

Fix a preference profil® and a voting ruleF, and letc be the winner under truthful voting. For
anyv € V, let I(v,c) denote the set of candidates thatanks strictly above. We say that two
votersu andv aresimilarif I(u,c) = I(v,c). A similar setS, of a voterv for a given preference
profile R and a voting ruleF is given byS, = {u | I(u,c) = I(v,c)}. (The setS, depends ofR
and.F; however, for readability we omi® andF from the notation).

Note that ifu andwv are similar, they rank in the same position. Further, a change of outcome
from c to another alternative is positive from’s perspective if and only if it is positive fromis per-
spective. Thus, intuitively, any manipulation that is praifie foru is also profitable fon. Observe
also that similarity is an equivalence relation, and the Sgtare the corresponding equivalence
classes. In particular, this implies that for anyw € V eitherS, = S, or S, NS, = 0.

We can now adapt Definition 1 to our setting by repladifjgvith S,,.

Definition 2. A voteL is a strategic vote in the preference-based extenfiom at R underF if
for someU C S, we haveF(R_y (L)) =, F(R). Further, we say thaL is a safe strategic vote
in the preference-based extensfona voterv at R underF if L is a strategic vote aR underF,
and foranyU C S, eitherF(R_y (L)) >, F(R) or F(R_u (L)) = F(R).



Observe that ifL. is a (safe) strategic vote farat R underF, then it is also a (safe) strategic
vote for anyu € S,. Indeedu € S, impliesS,, = S, and for anya € C we havea =, F(R) if
and only ifa >, F(R). Note also that we do not requife# R,: indeed, in the preference-based
extensionL = R,, may be a non-trivial manipulation, as it may induce voter§,jn, {v} to switch
their preferences t®,,. That is, a voter may manipulate the election simply by agkither voters
with similar preferences to vote like he does. Finally, k&sy to see that for any voterthe setS,
of similar voters is easy to compute.

The two computational problems considered throughoupidier, i.e., the safety of a given ma-
nipulation and the existence of a safe manipulation rened@vant for the preference-based model.
We will refer to these problems in this setting &SAFEP” and ExISTSAFEP”, respectively, and
use prefixw to denote their weighted variants. The problem$IGSAFEP” and (W)EXISTSAFEP”
appear to be somewhat harder than their counterparts inrifjiead model. Indeed, while voters
in S, have similar preferences, their truthful votes may be sutigtlly different, so it now matters
whichof the voters inS,, decide to follow the manipulator (rather than jisiwv manyof them, as in
the original model). In particular, it is not clear 8$AFEP" (F) is polynomial-time solvable for any
voting rule 7. However, it turns out that both of our problems are easyfapproval, even with
weighted voters.

Theorem 9. For k-approval, the probleme/l SSAFEP” andWEXISTSAFEP” are inP.

In the preference-based model, a vaidollows a recommendation to vote in a particular way
if it comes from a voter whose preferences are similar toghafs. However, this approach does
not describe settings where a voter follows a recommendaiid so much because he trusts the
recommender, but for pragmatic purposes, i.e., becausprtimsed manipulation advances her
own goals. Clearly, this may happen even if the overall pegfees of the original manipulator and
the follower are substantially different. We will now praggoa model that aims to capture this type
of scenarios.

Goal-Based Extension If the potential follower’s preferences are different frémose of the ma-
nipulator, his decision to join the manipulating coalitisrikely to depend on the specific manipu-
lation that is being proposed. Thus, in this subsection Wiedefine the set of potential followers
in a way that depends both on the original manipulator'stithetrand his proposed votg, i.e., we
haveF = F;(L). Note, however, that it is not immediately obvious how toideavhether a voter
j can benefit from following’s suggestion to voté, and thus should be included in the $&tL).
Indeed, the benefit tp depends on which other voters are in theB€f.), which indicates that the
definition of the sef; (L) has to be self-referential.

In more detail, for a given voting rul&, an electionC, V') with a preference profil&, a voter
1 € V and a votel, we say that a votef is pivotal for a sety/ C V with respecttdi, L) if j ¢ U,
R; # LandF(R_wuyjy (L)) =; F(R-v(L)). Thatis, a votey is pivotal for a seU if when
the voters inJ vote according td_, it is profitable forj to join them. Now, it might appear natural
to define the follower set fofi, L) as the set that consists o&nd all votersj € V that are pivotal
with respect tqi, L) for some set/ C V. However, this definition is too broad: a voter is included
as long as it is pivotal for some subgétC V/, even if the voters i/ cannot possibly benefit from
voting L. To exclude such scenarios, we need to requirelititgelf is also drawn from the follower
set. Formally, we say thdt; (L) is afollower setfor (i, L) if it is @ maximal setF' that satisfies the
following condition:

Vie F[(j=1i) Vv (3U C Fs.t.jis pivotal forU with respect tqi, L))] *

Observe that this means thit(L) is a fixed point of a mapping fro@" to 2V, i.e., this definition
is indeed self-referential. To see that the follower senisjuely defined for any € V' and any vote
L, note that the union of any two sets that satisfy conditigra{so satisfies (*); note also that we
always have ¢ F;(L).



We can now define what it means fbrto be astrategic vote in the goal-based extensim a
safe strategic vote in the goal-based extendigmeplacing the conditiotV C S; with U C F;(L)
in Definition 2. We will denote the computational problemsch&cking whether a given vote is a
safe strategic vote for a given voter in the goal-based sidarand whether a given voter has a safe
strategic vote in the goal-based extension $§AFEY' and ExISTSAFEY!, respectively, and use the
prefix w to refer to weighted versions of these problems.

Two remarks are in order. First, it may be the case that evaumgthi benefits from proposing to
vote L, he is never pivotal with respect o, L) (this can happen, e.g.,i% weight is much smaller
that that of the other voters). Thus, we need to explicitgludes in the setF;(L), to avoid the
paradoxical situation wherieZ F;(L). Second, our definition of a safe vote only guarantees safety
to the original manipulator, but not to her followers. In t@st, in the preference-based extension,
any vote that is safe for the original manipulator is als@ $af all similar voters.

The definition of a safe strategic vote in the goal-basedsit@ captures a number of situations
not accounted for by the definition of a safe strategic votbé@preference-based extension. To see
this, consider the following example.

Example 2. Consider an election with the set of candidates- {a, b, ¢, d, e}, and three voters,
2, and3, whose preferences are givendy-1 b =1 c =1 d =1 ¢,e =2 b =2 a =2 d =5 ¢, and
d -3 a>=30b>3c>3e. Suppose that the voting rule is Plurality, and the ties ao&dn according
to the priority order = b = ¢ > e > a.

Under truthful voting,d is the winner, so we hav8; # S,. Thus, in the preference-based
extension, a vote that ranksfirst is a safe strategic vote for votey but a vote that ranksfirst is
not. On the other hand, Iét be any vote that ranksfirst. ThenFy (L) = F»(L) = {1,2}. Indeed,
if voter 1 switches to votind_, the winner is stilkd, but it becomes profitable for votérto join her,
and vice versa. On the other hand, it is easy to see that ¥@@nnot profit by voting.. It follows
that in the goal-based extensidris a safe strategic vote for votér

From a practical perspective, it is plausible that in Examplvotersl and2 would be able
to reconcile their differences (even though they are sulisia—voter1 ranks voter2’s favorite
candidate last) and jointly vote fér as this is beneficial for both of them. Thus, at least in some
situations the model provided by the goal-based extensiantuitively more appealing. However,
computationally it is considerably harder to deal with tiia® preference-based extension.

Indeed, it is not immediately clear how to compute the BgtL), as its definition is non-
algorithmic in nature. While one can consider all subset¥ adind check whether they satisfy
condition (*), this approach is obviously inefficient. Wencavoid full enumeration if have access
to a procedured(i, L, j, W) that for each pai(i, L), each voterj € V and each séii’ C V can
check ifj = i or there is a se/ C W such thatj is pivotal for U with respect ta(i, L). Indeed,
if this is the case, we can compulig(L) as follows. We start withV = V, run A(4, L, j, W) for
all j € W, and let’W’ to be the set of all voters for whicH(i, L, j, W) outputs “yes”. We then set
W = W', and iterate this step unfi’ = W’. In the end, we sek;(L) = W. The correctness of
this procedure can be proven by induction on the number i@titens and follows from the fact that
if a setW contains no subséf that is pivotal forj, then no smaller s8V’ C W can contain such a
subset. Moreover, since each iteration reduces the sidé, dfie process converges after at most
iterations. Thus, this algorithm runs in polynomial timétié procedured (i, L, j, W) is efficiently
implementable. We will now show that this is indeed the cas®furality (with unweighted voters).

Theorem 10. Given an electio{C, V') with a preference profil&®k and unweighted voters, a ma-
nipulatori, and a votel, we can compute the s&f(L) with respect to Plurality in time polynomial
in the input size.

We can use Theorem 10 to show that under Plurality one camndiei in polynomial time
whether a given voté is safe for a playet, as well as find a safe strategic vote faf one exists,
as long as the voters are unweighted.



Theorem 11. The problem$sSAFEY andExISTSAFEY are polynomial-time solvable for Plurality.

For weighted voters, computing the follower set is compotetly hard even for Plurality.
While this result does not immediately imply thatl SSAFEY" and WEXISTSAFEY are also hard
for Plurality, it indicates that these problems are unijkel be easily solvable.

Theorem 12. Given an instancéC, V, w, R) of Plurality elections, voters, j € VV and a voteL,
it is NP-hard to decide whether € F;(L).

Just a little further afield, checking whether a given votsage with respect t8-approval is
computationally hard even for unweighted voters. This isantrast with the standard model and
the preference-based extension, where safely manipglatipproval is easy for arbitrary.

Theorem 13. ISSAFEY! is coNP-hard for 3-approval.

Thus, while the preference-based extension appears tonilarsio the original model of [11]
from the computational perspective, the goal-based extersconsiderably more difficult to work
with.

7 Conclusions

In this paper, we started the investigation of algorithnaimplexity of safe manipulation, as defined

by Slinko and White [11]. We showed that finding a safe marifiah is easy fok-approval for an
arbitrary value oft and for Bucklin, even with weighted voters. Somewhat ssipgly, checking
whether a given manipulation is safe appears to be a moreuiffiroblem, at least for weighted
voters: while this problem is polynomial-time solvable feapproval, it iscoNP-hard for Buck-
lin. For the Borda rule, both checking whether a given malaifion is safe and identifying a safe
manipulation is hard when the voters are weighted.

We also proposed two ways of extending the notion of safe pudetion to heterogeneous
groups of manipulators, and initiated the study of compomai complexity of related questions.
Our first extension of the model of [11] is very simple and nalitand seems to behave similarly to
the original model from the algorithmic perspective. Hoegarguably, it does not capture some of
the scenarios that may occur in practice. Our second modsehisiderably richer, but many of the
associated computational problems become intractable.

A natural open question is determining the complexity ofifiigca safe strategic vote for voting
rules not considered in this paper, such as Copeland, Rddiex] or Maximin. Moreover, for some
of the voting rules we have investigated, the picture giwethis paper is incomplete. In particular, it
would be interesting to understand the computational cerityl of finding a safe manipulation for
Borda (and, more generally, for all scoring rules) for urgieéd voters. The problem for Borda is
particularly intriguing as this is perhaps the only widelydied voting rule for which the complexity
of unweighted coalitional manipulation in the standard elasinot known.

Other exciting research directions include formalizind awvestigating the problem of selecting
the best safe manipulation (is it the one that succeeds nftae or one that achieves better results
when it succeeds?), and extending our analysis to othes typte-breaking rules, such as, e.g.,
randomized tie-breaking rules. However, the latter qoestnay require modifying the notion of
a safe manipulation, as the outcome of a strategic vote besanprobability distribution over the
alternatives.
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