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Abstract

The stable marriage problem is a well-known problem of matching men to women so
that no man and woman, who are not married to each other, both prefer each other.
Such a problem has a wide variety of practical applications, ranging from matching
resident doctors to hospitals, to matching students to schools or more generally to
any two-sided market. In the classical stable marriage problem, both men and women
express a strict preference order over the members of the other sex, in a qualitative
way. Here we consider stable marriage problems with quantitative preferences: each
man (resp., woman) provides a score for each woman (resp., man). Such problems
are more expressive than the classical stable marriage problems. Moreover, in some
real-life situations it is more natural to express scores (to model, for example, profits
or costs) rather than a qualitative preference ordering. In this context, we define
new notions of stability and optimality, and we provide algorithms to find marriages
which are stable and/or optimal according to these notions. While expressivity
greatly increases by adopting quantitative preferences, we show that in most cases
the desired solutions can be found by adapting existing algorithms for the classical
stable marriage problem.

1 Introduction

The stable marriage problem (SM) [5] is a well-known problem of matching the elements of
two sets. It is called the stable marriage problem since the standard formulation is in terms
of men and women, and the matching is interpreted in terms of a set of marriages. Given
n men and n women, where each person expresses a strict ordering over the members of
the opposite sex, the problem is to match the men to the women so that there are no two
people of opposite sex who would both rather be matched with each other than their current
partners. If there are no such people, all the marriages are said to be stable. In [4] Gale and
Shapley proved that it is always possible to find a matching that makes all marriages stable,
and provided a polynomial time algorithm which can be used to find one of two extreme
stable marriages, the so-called male-optimal or female-optimal solutions. The Gale-Shapley
algorithm has been used in many real-life scenarios, such as in matching hospitals to resident
doctors [12], medical students to hospitals, sailors to ships [8], primary school students to
secondary schools [13], as well as in market trading [14].

In the classical stable marriage problem, both men and women express a strict preference
order over the members of the other sex in a qualitative way. Here we consider stable
marriage problems with quantitative preferences. In such problems each man (resp., woman)
provides a score for each woman (resp., man). Stable marriage problems with quantitative
preferences are interesting since they are more expressive than the classical stable marriage
problems, since in classical stable marriage problem a man (resp., a woman) cannot express
how much he (resp., she) prefers a certain woman (resp., man). Moreover, they are useful in
some real-life situations where it is more natural to express scores, that can model notions
such as profit or cost, rather than a qualitative preference ordering. In this context, we
define new notions of stability and optimality, we compare such notions with the classical
ones, and we show algorithms to find marriages which are stable and/or optimal according
to these notions. While expressivity increases by adopting quantitative preferences, we show



that in most cases the desired solutions can be found by adapting existing algorithms for
the classical stable marriage problem.

Stable marriage problems with quantitative preferences have been studied also in [6, 7].
However, they solve these problems by looking at the stable marriages that maximize the
sum of the weights of the married pairs, where the weights depend on the specific criteria
used to find an optimal solution, that can be minimum regret criterion [6], the egalitarian
criterion [7] or the Lex criteria [7]. Therefore, they consider as stable the same marriages
that are stable when we don’t consider the weights. We instead use the weights to define new
notions of stability that may lead to stable marriages that are different from the classical
case. They may rely on the difference of weights that a person gives to two different people
of the other sex, or by the strength of the link of the pairs (man,woman), i.e., how much
a person of the pair wants to be married with the other person of the pair. The classical
definition of stability for stable marriage problems with quantitative preferences has been
considered also in [2] that has used a semiring-based soft constraint approach [3] to model
and solve these problems.

The paper is organized as follows. In Section 2 we give the basic notions of classical
stable marriage problems, stable marriage problems with partially ordered preferences and
stable marriage problems with quantitative preferences (SMQs). In Section 3 we introduce
a new notion of stability, called α-stability for SMQs, which depends on the difference of
scores that every person gives to two different people of the other sex, and we compare it
with the classical notion of stability. Moreover, we give a new notion of optimality, called
lex-optimality, to discriminate among the new stable marriages, which depends on a voting
rule. We show that there is a unique optimal stable marriage and we give an algorithm to
find it. In Section 4 we introduce other notions of stability for SMQs that are based on the
strength of the link of the pairs (man,woman), we compare them with the classical stability
notion, and we show how to find marriages that are stable according to these notions with
the highest global link. In Section 5 we summarize the results contained in this paper, and
we give some hints for future work.

2 Background

We now give some basic notions on classical stable marriage problems, stable marriage
problems with partial orders, and stable marriage problems with quantitative preferences.

2.1 Stable marriage problems

A stable marriage problem (SM) [5] of size n is the problem of finding a stable marriage
between n men and n women. Such men and women each have a preference ordering over
the members of the other sex. A marriage is a one-to-one correspondence between men and
women. Given a marriage M , a man m, and a woman w, the pair (m, w) is a blocking pair
for M if m prefers w to his partner in M and w prefers m to her partner in M . A marriage
is said to be stable if it does not contain blocking pairs.

The sequence of all preference orderings of men and women is usually called a profile.
In the case of classical stable marriage problem (SM), a profile is a sequence of strict total
orders.

Given a SM P , there may be many stable marriages for P . However, it is interesting to
know that there is always at least one stable marriage.

Given an SM P , a feasible partner for a man m (resp., a woman w) is a woman w (resp.,
a man m) such that there is a stable marriage for P where m and w are married.

The set of all stable marriages for an SM forms a lattice, where a stable marriage M1

dominates another stable marriage M2 if men are happier (that is, are married to more or



equally preferred women) in M1 w.r.t. M2. The top of this lattice is the stable marriage
where men are most satisfied, and it is usually called the male-optimal stable marriage.
Conversely, the bottom is the stable marriage where men’s preferences are least satisfied
(and women are happiest, so it is usually called the female-optimal stable marriage). Thus,
a stable marriage is male-optimal iff every man is paired with his highest ranked feasible
partner.

The Gale-Shapley (GS) algorithm [4] is a well-known algorithm to solve the SM problem.
At the start of the algorithm, each person is free and becomes engaged during the execution
of the algorithm. Once a woman is engaged, she never becomes free again (although to
whom she is engaged may change), but men can alternate between being free and being
engaged. The following step is iterated until all men are engaged: choose a free man m, and
let m propose to the most preferred woman w on his preference list, such that w has not
already rejected m. If w is free, then w and m become engaged. If w is engaged to man m’,
then she rejects the man (m or m’) that she least prefers, and becomes, or remains, engaged
to the other man. The rejected man becomes, or remains, free. When all men are engaged,
the engaged pairs form the male optimal stable matching. It is female optimal, of course, if
the roles of male and female participants in the algorithm were interchanged.

This algorithm needs a number of steps that, in the worst case, is quadratic in n (that
is, the number of men), and it guarantees that, if the number of men and women coincide,
and all participants express a strict order over all the members of the other group, everyone
gets married, and the returned matching is stable.

Example 1 Assume n = 2. Let {w1, w2} and {m1, m2} be respectively the set of women
and men. The following sequence of strict total orders defines a profile:

• m1 : w1 > w2 (i.e., man m1 prefers woman w1 to woman w2),

• m2 : w1 > w2,

• w1 : m2 > m1,

• w2 : m1 > m2.

For this profile, the male-optimal solution is {(m1, w2), (m2, w1)}. For this specific profile
the female-optimal stable marriage coincides with the male-optimal one. 2

2.2 Stable marriage problems with partially ordered preferences

In SMs, each preference ordering is a strict total order over the members of the other sex.
More general notions of SMs allow preference orderings to be partial [9]. This allows for
the modelling of both indifference (via ties) and incomparability (via absence of ordering)
between members of the other sex. In this context, a stable marriage problem is defined by
a sequence of 2n partial orders, n over the men and n over the women. We will denote with
SMP a stable marriage problem with such partially ordered preferences.

Given an SMP, we will sometimes use the notion of a linearization of such a problem,
which is obtained by linearizing the preference orderings of the profile in a way that is
compatible with the given partial orders.

A marriage M for an SMP is said to be weakly-stable if it does not contain blocking
pairs. Given a man m and a woman w, the pair (m, w) is a blocking pair if m and w are
not married to each other in M and each one strictly prefers the other to his/her current
partner.

A weakly stable marriage M dominates a weakly stable marriage M ′ iff for every man
m, M(m) ≥ M ′(m) and there is a man m′ s.t. M(m′) > M ′(m′). Notice that there may
be more than one undominated weakly stable marriage for an SMP.



2.3 Stable marriage problems with quantitative preferences

In classical stable marriage problems, men and women express only qualitative preferences
over the members of the other sex. For every pair of women (resp., men), every man (resp.,
woman) states only that he (resp., she) prefers a woman (resp., a man) more than another
one. However, he (resp., she) cannot express how much he (resp., she) prefers such a woman
(resp., a man). This is nonetheless possible in stable marriage problems with quantitative
preferences.

A stable marriage problem with quantitative preferences (SMQ) [7] is a classical SM where
every man/woman gives also a numerical preference value for every member of the other
sex, that represents how much he/she prefers such a person. Such preference values are
natural numbers and higher preference values denote a more preferred item. Given a man
m and a woman w, the preference value for man m (resp., woman w) of woman w (resp.,
man m) will be denoted by p(m, w) (resp., p(w, m)).

Example 2 Let {w1, w2} and {m1, m2} be respectively the set of women and men. An
instance of an SMQ is the following:

• m1 : w
[9]
1 > w

[1]
2 (i.e., man m1 prefers woman w1 to woman w2, and he prefers w1

with value 9 and w2 with value 1),

• m2 : w
[3]
1 > w

[2]
2 ,

• w1 : m
[2]
2 > m

[1]
1 ,

• w2 : m
[3]
1 > m

[1]
2 .

The numbers written into the round brackets identify the preference values. 2

In [7] they consider stable marriage problems with quantitative preferences by looking
at the stable marriage that maximizes the sum of the preference values. Therefore, they use
the classical definition of stability and they use preference values only when they have to
look for the optimal solution. We want, instead, to use preference values also to define new
notions of stability and optimality.

We will introduce new notions of stability and optimality that are based on the quanti-
tative preferences expressed by the agents and we will show how to find them by adapting
the classical Gale-Shapley algorithm [4] for SMs described in Section 2.

3 α-stability

A simple generalization of the classical notion of stability requires that there are not two
people that prefer with at least degree α (where α is a natural number) to be married to
each other rather than to their current partners.

Definition 1 (α-stability) Let us consider a natural number α with α ≥ 1. Given a
marriage M , a man m, and a woman w, the pair (m, w) is an α-blocking pair for M if the
following conditions hold:

• m prefers w to his partner in M , say w′, by at least α (i.e., p(m, w)− p(m, w′) ≥ α),

• w prefers m to her partner in M , say m′, by at least α (i.e., p(w, m)− p(w, m′) ≥ α).

A marriage is α-stable if it does not contain α-blocking pairs. A man m (resp., woman w) is
α-feasible for woman w (resp., man m) if m is married with w in some α-stable marriage.



3.1 Relations with classical stability notions

Given an SMQ P , let us denote with c(P ), the classical SM problem obtained from P by
considering only the preference orderings induced by the preference values of P .

Example 3 Let us consider the SMQ, P , shown in Example 2. The stable marriage problem
c(P ) is shown in Example 1. 2.

If α is equal to 1, then the α-stable marriages of P coincide with the stable marriages
of c(P ). However, in general, α-stability allows us to have more marriages that are stable
according to this definition, since we have a more relaxed notion of blocking pair. In fact, a
pair (m, w) is an α-blocking if both m and w prefer each other to their current partner by
at least α and thus pairs (m′, w′) where m′ and w′ prefer each other to their current partner
of less than α are not considered α-blocking pairs.

The fact that α-stability leads to a larger number of stable marriages w.r.t. the classical
case is important to allow new stable marriages where some men, for example the most
popular ones, may be married with partners better than all the feasible ones according to
the classical notion of stability.

Given an SMQ P , let us denote with Iα(P ) the set of the α-stable marriages of P and
with I(c(P )) the set of the stable marriages of c(P ). We have the following results.

Proposition 1 Given an SMQ P , and a natural number α with α ≥ 1,

• if α = 1, Iα(P ) = I(c(P ));

• if α > 1, Iα(P ) ⊇ I(c(P )).

Given an SMP P , the set of α-stable marriages of P contains the set of stable marriages
of c(P ), since the α-blocking pairs of P are a subset of the blocking pairs of c(P ).

Let us denote with α(P ) the stable marriage with incomparable pairs obtained from an
SMQ P by setting as incomparable every pair of people that don’t differ for at least α, and
with Iw(α(P )) the set of the weakly stable marriages of α(P ). It is possible to show that the
set of the weakly stable marriages of α(P ) coincides with the set of the α-stable marriages
of P .

Theorem 1 Given an SMQ P , Iα(P ) = Iw(α(P )).

Proof: We first show that Iα(P ) ⊆ Iw(α(P )). Assume that a marriage M 6∈ Iw(α(P )),
we now show that M 6∈ Iα(P ). If M 6∈ Iw(α(P )), then there is a pair (man,woman), say
(m, w), in α(P ) such that m prefers w to his partner in M , say w′, and w prefers m to her
partner in M , say m′. By definition of α(P ), this means that m prefers w to w′ by at least
degree α and w prefers m to m′ by at least degree α in P , and so M 6∈ Iα(P ). Similarly, we
can show that Iα(P ) ⊇ Iw(α(P )). In fact, if M 6∈ Iα(P ), then there is a pair (man,woman),
say (m, w), in P such that m prefers w to w′ by at least degree α and w prefers m to m′ by
at least degree α. By definition of α(P ), this means that m prefers w to w′ and w prefers
m to m′ in α(P ) and so M 6∈ Iw(α(P )), i.e., M is not a weakly stable marriage for α(P ). 2

This means that, given an SMQ P , every algorithm that is able to find a weakly stable
marriage for α(P ) provides an α-stable marriage for P .

Example 4 Assume that α is 2. Let us consider the following instance of an SMQ, say P .

• m1 : w
[3]
1 > w

[2]
2

• m2 : w
[4]
1 > w

[2]
2 ,



• w1 : m
[8]
1 > m

[5]
2 ,

• w2 : m
[3]
1 > m

[1]
2 .

The SMP α(P ) is the following:

• m1 : w1 ⊲⊳ w2 (where ⊲⊳ means incomparable),

• m2 : w1 > w2,

• w1 : m1 > m2,

• w2 : m1 > m2.

The set of the α-stable marriages of P , that coincides with the set of the weakly stable mar-
riages of α(P ), by Theorem 1, contains the following marriages: M1 = {(m1, w1), (m2, w2)}
and M2 = {(m1, w2), (m2, w1)}. 2

On the other hand, not all stable marriage problems with partially ordered preferences
can be expressed as stable marriage problems with quantitative preferences such that the
stable marriages in the two problems coincide. More precisely, given any SMP problem P ,
we would like to be able to generate a corresponding SMQ problem P ′ and a value α such
that, in P ′, the weights of elements ordered in P differ more than α, while those of elements
that are incomparable in P differ less than α. Consider for example the case of a partial
order over six elements, defined as follows: x1 > x2 > x3 > x4 > x5 and x1 > y > x5. Then
there is no way to choose a value α and a linearization of the partial order such that the
weights of xi and xj differ for at least α, for any i,j between 1 and 5, while at the same time
the weight of y and each of the xi’s differ for less than α.

3.2 Dominance and lex-male-optimality

We recall that in SMPs a weakly-stable marriage dominates another weakly-stable marriage
if men are happier (or equally happy) and there is at least a man that is strictly happier.
The same holds for α-stable marriages. As in SMPs there may be more than one undomi-
nated weakly-stable marriage, in SMQs there may be more than one undominated α-stable
marriage.

Definition 2 (dominance) Given two α-stable marriages, say M and M ′, M dominates
M ′ if every man is married in M to more or equally preferred woman than in M ′ and there
is at least one man in M married to a more preferred woman than in M ′.

Example 5 Let us consider the SMQ shown in Example 4. We recall that α is 2 and
that the α-stable marriages of this problem are M1 = {(m1, w1), (m2, w2)} and M2 =
{(m1, w2), (m2, w1)}. M2 does not dominate M1 since, for m1, M1(m1) > M2(m1) and
M1 does not dominate M2 since, for m2, M2(m2) > M1(m2). 2

We now discriminate among the α-stable marriages of an SMQ, by considering the
preference values given by women and men to order pairs that differ for less than α.

We will consider a marriage optimal when the most popular men are as happy as possible
and they are married with the most popular α-feasible women.

To compute a strict ordering on the men where the most popular men (resp., the most
popular women) are ranked first, we follow a reasoning similar to the one considered in
[11, 10], that is, we apply a voting rule [1] to the preferences given by the women (resp.,
by the men) . More precisely, such a voting rule takes in input the preference values given
by the women over the men (resp., given by the men over the women) and returns a strict
total order over the men (resp., women).



Definition 3 (lex-male-optimal) Consider an SMQ P , a natural number α, and a voting
rule r. Let us denote with om (resp., ow) the strict total order over the men (resp., over
the women) computed by applying r to the preference values that the women give to the men
(resp., the men give to the women). An α-stable marriage M is lex-male-optimal w.r.t. om

and ow, if, for every other α-stable marriage M ′, the following conditions hold:

• there is a man mi such that M(mi) ≻ow
M ′(mi),

• for every man mj ≺om
mi, M(mj) = M ′(mj).

Proposition 2 Given an SMQ P , a strict total ordering om (resp., ow) over the men (resp.,
women),

• there is a unique lex-male-optimal α-stable marriage w.r.t. om and ow, say L.

• L may be different from the male-optimal stable marriage of c(P );

• if α(P ) has a unique undominated weakly stable marriage, say L′, then L coincides
with L′, otherwise L is one of the undominated weakly stable marriages of α(P ).

Example 6 Let us consider the SMQ, P , shown in Example 4. We have shown previously
that this problem has two α-weakly stable marriages that are undominated. We now want
to discriminate among them by considering the lex-male-optimality notion. Let us consider
as voting rule the rule that takes in input the preference values given by the women over
the men (resp., by the men over the women) and returns a strict preference ordering over
the men (resp., women). This preference ordering is induced by the overall score that each
man (resp., woman) receives: men (women) that receive higher overall scores are more
preferred. The overall score of a man m (resp., woman w), say s(m) (resp., s(w)), is
computed by summing all the preference values that the women give to him (the men give
to her). If two candidates receive the same overall score, we use a tie-breaking rule to order
them. If we apply this voting rule to the preference values given by the women in P , then
we obtain s(m1) = 8 + 3 = 11, s(m2) = 5 + 1 = 6, and thus the ordering om is such
that m1 ≻om

m2. If we apply the same voting rule to the preference values given by the
men in P , s(w1) = 3 + 4 = 7, s(w2) = 2 + 2 = 4, and thus the ordering ow is such that
w1 ≻ow

w2. The lex-male-optimal α-stable marriage w.r.t. om and ow is the marriage
M1 = {(m1, w1), (m2, w2)}. 2

3.3 Finding the lex-male-optimal α-stable marriage

It is possible to find optimal α-stable marriages by adapting the GS-algorithm for classical
stable marriage problems [4].

Given an SMQ P and a natural number α, by Theorem 1, to find an α-stable marriage
it is sufficient to find a weakly stable marriage of α(P ). This can be done by applying the
GS algorithm to any linearization of α(P ).

Given an SMQ P , a natural number α, and two orderings om and ow over men and
women computed by applying a voting rule to P as described in Definition 3, it is possible
to find the α-stable marriage that is lex-male-optimal w.r.t om and ow by applying the GS
algorithm to the linearization of α(P ) where we order incomparable pairs, i.e., the pairs
that differ for less than α in P , in accordance with the orderings om and ow.

Proposition 3 Given an SMQ P , a natural number α, om (resp., ow) an ordering over the
men (resp., women), algorithm Lex-male-α-stable-GS returns the lex-male-optimal α-stable
marriage of P w.r.t. om and ow.



Algorithm 1: Lex-male-α-stable-GS

Input: P : an SMQ, α: a natural number, r: a voting rule
Output: µ: a marriage
om ← the strict total order over the men obtained by applying r to the preference
values given by the women over the men
ow ←: the strict total order over the women obtained by applying r to the preference
values given by the men over the women
P ′ ← the linearization of α(P ) obtained by ordering incomparable pairs of α(P ) in
accordance with om and ow;
µ← the marriage obtained by applying the GS algorithm to P ′;
return µ

4 Stability notions relying on links

Until now we have generalized the classical notion of stability by considering separately
the preferences of the men and the preferences of the women. We now intend to define
new notions of stability that take into account simultaneously the preferences of the men
and the women. Such a new notion will depend on the strength of the link of the married
people, i.e., how much a man and a woman want to be married with each other. This is
useful to obtain a new notion of stable marriage, that looks at the happiness of the pairs
(man,woman) rather than at the happiness of the members of a single sex.

A way to define the strength of the link of two people is the following.

Definition 4 (link additive-strength) Given a man m and a woman w, the link
additive-strength of the pair (m, w), denoted by la(m, w), is the value obtained by sum-
ming the preference value that m gives to w and the preference value that w gives to m, i.e.,
la(m, w) = p(m, w) + p(w, m). Given a marriage M , the additive-link of M , denoted by
la(M), is the sum of the links of all its pairs, i.e.,

∑
{(m,w)∈M} la(m, w).

Notice that we can use other operators beside the sum to define the link strength, such
as, for example, the maximum or the product.

We now give a notion of stability that exploit the definition of the link additive-strength
given above.

Definition 5 (link-additive-stability) Given a marriage M , a man m, and a woman w,
the pair (m, w) is a link-additive-blocking pair for M if the following conditions hold:

• la(m, w) > la(m′, w),

• la(m, w) > la(m, w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-additive-stable if it does not contain link-additive-blocking pairs.

Example 7 Let {w1, w2} and {m1, m2} be, respectively, the set of women and men. Con-
sider the following instance of an SMQ, P :

• m1 : w
[30]
1 > w

[3]
2 ,

• m2 : w
[4]
1 > w

[3]
2 ,

• w1 : m
[6]
2 > m

[5]
1 ,



• w2 : m
[10]
1 > m

[2]
2 .

In this example there is a unique link-additive-stable marriage, that is M1 =
{(m1, w1), (m2, w2)}, which has additive-link la(M1) = 35 + 5 = 40. Notice that such a
marriage has an additive-link higher than the male-optimal stable marriage of c(P ) that is
M2 = {(m1, w2), (m2, w1)} which has additive-link la(M2) = 13 + 10 = 23. 2

The strength of the link of a pair (man,woman), and thus the notion of link stability,
can be also defined by considering the maximum operator instead of the sum operator.

Definition 6 (link maximal-strength) Given a man m and a woman w, the link
maximal-strength of the pair (m, w), denoted by lm(m, w), is the value obtained by tak-
ing the maximum between the preference value that m gives to w and the preference value
that w gives to m, i.e., lm(m, w) = max(p(m, w), p(w, m)). Given a marriage M , the
maximal-link of M , denoted by lm(M), is the maximum of the links of all its pairs, i.e.,
max{(m,w)∈M}lm(m, w).

Definition 7 (link-maximal-stability) Given a marriage M , a man m, and a woman
w, the pair (m, w) is a link-maximal-blocking pair for M if the following conditions hold:

• lm(m, w) > lm(m′, w),

• lm(m, w) > lm(m, w′),

where m′ is the partner of w in M and w′ is the partner of m in M . A marriage is
link-maximal-stable if it does not contain link-maximal-blocking pairs.

4.1 Relations with other stability notions

Given an SMQ P , let us denote with Linka(P ) (resp., Linkm(P )) the stable marriage
problem with ties obtained from P by changing every preference value that a person x gives
to a person y with the value la(x, y) (resp., lm(x, y)), by changing the preference rankings
accordingly, and by considering only these new preference rankings.

Let us denote with Ila(P ) (resp., Ilm(P )) the set of the link-additive-stable marriages
(resp., link-maximal-stable marriages) of P and with Iw(Linka(P )) (resp., Iw(Linkm(P )))
the set of the weakly stable marriages of Linka(P ) (resp., Linkm(P )). It is possible to show
that these two sets coincide.

Theorem 2 Given an SMQ P , Ila(P ) = Iw(Linka(P )) and Ilm(P ) = Iw(Linkm(P )).

Proof: Let us consider a marriage M . We first show that if M ∈ Iw(Linka(P )) then
M ∈ Ila(P ). If M 6∈ Ila(P ), there is a pair (m, w) that is a link-additive-blocking pair, i.e.,
la(m, w) > la(m, w′) and la(m, w) > la(m′, w), where w′ (resp., m′) is the partner of m

(resp., w) in M . Since la(m, w) > la(m, w′), m prefers w to w′ in the problem Linka(P ),
and, since la(m, w) > la(m′, w), w prefers m to m′ in the problem Linka(P ). Hence (m, w)
is a blocking pair for the problem Linka(P ). Therefore, M 6∈ Iw(Linka(P )).

We now show that if M ∈ Ila(P ) then M ∈ Iw(Linka(P )). If M 6∈ Iw(Linka(P )), there
is a pair (m, w) that is a blocking pair for Iw(Linka(P )), i.e., m prefers w to w′ in the
problem Linka(P ), and w prefers m to m′ in the problem Linka(P ). By definition of the
problem Linka(P ), la(m, w) > la(m, w′) and la(m, w) > la(m′, w). Therefore, (m, w) is a
link-additive-blocking pair for the problem P . Hence, M 6∈ Ila(P ).

It is possible to show similarly that Ilm(P ) = Iw(Linkm(P )). 2

When no preference ordering changes in Linka(P ) (resp., Linkm(P )) w.r.t. P , then
the link-additive-stable (resp., link-maximal-stable) marriages of P coincide with the stable
marriages of c(P ).



Proposition 4 Given an SMQ P , if Linka(P ) = c(P ) (Linkm(P ) = c(P )) , then Ila(P ) =
I(c(P )) (resp., Ilm(P ) = I(c(P ))).

If there are no ties in Linka(P ) (resp., Linkm(P )), then there is a unique link-additive-
stable marriage (resp., link-maximal-stable marriage) with the highest link.

Proposition 5 Given an SMQ P , if Linka(P ) (resp., Linkm(P )) has no ties, then there
is a unique link-additive-stable (resp., link-maximal-stable) marriage with the highest link.

If we consider the definition of link-maximal-stability, it is possible to define a class of
SMQs where there is a unique link-maximal-stable marriage with the highest link.

Proposition 6 In an SMQ P where the preference values are all different, there is a unique
link-maximal-stable marriage with the highest link.

4.2 Finding link-additive-stable and link-maximal-stable marriages

with the highest link

We now show that for some classes of preferences it is possible to find optimal link-additive-
stable marriages and link-maximal-stable marriages of an SMQ by adapting algorithm GS,
which is usually used to find the male-optimal stable marriage in classical stable marriage
problems.

By Proposition 2, we know that the set of the link-additive-stable (resp., link-maximal-
stable) marriages of an SMQ P coincides with the set of the weakly stable marriages of
the SMP Linka(P ) (resp., Linkm(P )). Therefore, to find a link-additive-stable (resp., link-
maximal-stable) marriage, we can simply apply algorithm GS to a linearization of Linka(P )
(resp., Linkm(P )).

Algorithm 2: link-additive-stable-GS (resp., link-maximal-stable-GS)

Input: P : an SMQ
Output: µ: a marriage
P ′ ← Linka(P ) (resp., Linkm(P ));
P ′′ ← a linearization of P ′;
µ← the marriage obtained by applying GS algorithm to P ′′;
return µ

Proposition 7 Given an SMQ P , the marriage returned by algorithm link-additive-stable-
GS (link-maximal-stable-GS) over P , say M , is link-additive-stable (resp., link-maximal-
stable). Moreover, if there are not ties in Linka(P ) (resp., Linkm(P )), M is link-additive-
stable (resp., link-maximal-stable) and it has the highest link.

When there are no ties in Linka(P ) (resp., Linkm(P )), the marriage returned by al-
gorithm link-additive-stable-GS (resp., link-maximal-stable-GS) is male-optimal w.r.t. the
profile with links. Such a marriage may be different from the classical male-optimal stable
marriage of c(P ), since it considers the happiness of the men reordered according to their
links with the women, rather than according their single preferences.

This holds, for example, when we assume to have an SMQ with preference values that
are all different and we consider the notion of link2-stability.

Proposition 8 Given an SMQ P where the preference values are all different, the marriage
returned by algorithm link-maximal-stable-GS algorithm over P is link-maximal-stable and
it has the highest link.



5 Conclusions and future work

In this paper we have considered stable marriage problems with quantitative preferences,
where both men and women can express a score over the members of the other sex. In
particular, we have introduced new stability and optimality notions for such problems and
we have compared them with the classical ones for stable marriage problems with totally or
partially ordered preferences. Also, we have provided algorithms to find marriages that are
optimal and stable according to these new notions by adapting the Gale-Shapley algorithm.

We have also considered an optimality notion (that is, lex-male-optimality) that exploits
a voting rule to linearize the partial orders. We intend to study if this use of voting rules
within stable marriage problems may have other benefits. In particular, we want to inves-
tigate if the procedure defined to find such an optimality notion inherits the properties of
the voting rule with respect to manipulation: we intend to check whether, if the voting rule
is NP-hard to manipulate, then also the procedure on SMQ that exploits such a rule is NP-
hard to manipulate. This would allow us to transfer several existing results on manipulation
complexity, which have been obtained for voting rules, to the context of procedures to solve
stable marriage problems with quantitative preferences.
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