Grundlegende Definitionen
Manipulation: Strategic Voting
Example

Consider the Borda election with candidates a, b, and ¢ and the
following votes:

Sincere Strategic
Votes Votes
points: 2 1 O 2 1 0
S5votes: a b c a b c
S5votes: b a ¢ = b ¢ a
1 vote: ¢ a b c a b
Borda Borda
winner a winner b
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Grundlegende Definiionen
Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)
Let £ be some voting system.

Name: £-CONSTRUCTIVE COALITIONAL MANIPULATION
(E-CCM).
Given: @ A set C of candidates,
@ alist V of nonmanipulative voters over C,
@ alist S of manipulative voters (whose votes over C
are still unspecified) with V. NS = (), and
@ a distinguished candidate c € C.

Question: Is there a way to set the preferences of the voters in S
such that, under election system &, c is a winner of
election (C,V US)?
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Grundlegende Definitionen
Variants of the Manipulation Problem

Remark: Variants:

@ £-DESTRUCTIVE COALITIONAL MANIPULATION (£-DCM) is the
same with “c is not a winner of (C,V US)”

@ If ||S|| = 1, we obtain the single-manipulator problems:
@ £-CONSTRUCTIVE MANIPULATION (£-CM) and
@ £-DESTRUCTIVE MANIPULATION (£-DM).

@ Voters can also be weighted (see next slide).

@ These problems can also be defined in the “unique-winner” model.
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Grundlegende Definiionen
Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation)
Let £ be some voting system.

Name: £-CONSTRUCTIVE (DESTRUCTIVE) COALITIONAL
WEIGHTED MANIPULATION (£-CCWM / £-DCWM).

Given: @ A set C of candidates,
@ alist V of nonmanipulative voters over C each having
a nonnegative integer weight,
@ a list of the weights of the manipulators in S (whose
votes over C are still unspecified) with V NS = (), and
@ a distinguished candidate c € C.

Question: Can the preferences of the voters in S be set such that c
is a £-winner (is not an £-winner) of (C,V US)?
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Some Basic Complexity Classes

Definition
© FPdenotes the class of polynomial-time computable total
functions mapping from £* to *.

© Pdenotes the class of problems that can be decided in polynomial
time (i.e., via a deterministic polynomial-time Turing machine).

© NP denotes the class of problems that can be accepted in

polynomial time (i.e., via a nondeterministic polynomial-time
Turing machine).
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Grundlegende Definiionen
Some Basic Complexity Classes

Remark:

@ Intuitively, FP and P, respectively, capture feasibility/efficiency of
computing functions and solving decision problems.

@ A € NPif and only if there exist a set B € P and a polynomial p
such that for each x € X*,
XxeA <<= (Iw)[w]| < p(]x])and (x,w) € BJ.
That is, NP is the class of problems whose YES instances can be
easily checked.
@ Central open question of TCS: P2 NP

@ Examples of problems in NP: SAT, TRAVELING SALESPERSON
PROBLEM, VERTEX COVER, CLIQUE, HAMILTON CIRCUIT, ...
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Grundlegende Definitionen
NP in Ancient Times

Wie heiBt 0as

Maennlein?
Raspar? _ Balthasar? Hammelstoade? . _ Rung? SDRumpelstilzchen?
I Sme[cf»ot? I 9%1ppefnest? I Gchmitbem? I eIng,? I
nein nein nein nein nein nein nein nein ja

Figure: Nondeterministic Guessing and Deterministic Checking
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Grundlegende Definitionen
Pol-Time Many-One Reducibility and Completeness

Definition
Let X be an alphabetand A,B C ¥*. Let C be any complexity class.
@ Define the polynomial-time many-one reducibility, denoted by <},
as follows: A <P, B if there is a function f € FP such that
(Wx e X*)[x € A < f(x) € B].

@ AsetB is <h-hard for C (or C-hard) if A<k B for each A € C.

© AsetB is <ph-complete for C (or C-complete) if

@ B is <h-hard for C (lower bound) and
@ B € C (upper bound).

@ Cis closed under the <h-reducibility (<h-closed, for short) if
(A<hBandB eC) = AcC.
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Properties of <,

O A<hBimplies A<} B, yet in general it is not true that A <h, A.
@ <b is areflexive and transitive, yet not antisymmetric relation.

© Pand NP are <P,-closed.
That is, upper bounds are inherited downward with respect to <h..

©Q IfA<h B and A is <h-hard for some complexity class C, then B is
<P -hard for C.
That is, lower bounds are inherited upward with respect to <P.

© LetC and D be any complexity classes. If C is <h-closed and B is
<h-complete for D, then D C C < B €.
In particular, if B is NP-complete, then

P=NP «<— BecP.



Manipulation Konstruktive Manipulation

Plurality and Regular Cup are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of
candidates, in both the unique-winner and nonunique-winner model).

Proof:

© For plurality, the manipulators simply check if ¢ wins when they all
rank c first.

o If so, they have found a successful strategy.
@ If not, no strategy can make ¢ win.

@ For the regular cup protocol (given the assignment of candidates
to the leaves of the binary balanced tree), see blackboard. O
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Konsiruktive Manipulation
Copeland with three Candidates is Easy to Manipulate

Copeland voting: Foreachc,d € C,c #d,
@ let N(c, d) be the number of voters who prefer c to d,
@ letC(c,d) =1if N(c,d) > N(d,c) and
® C(c,d) =12if N(c,d) = N(d,c).
@ The Copeland score of ¢ is CScore(c) = 34, C(c,d).
@ Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))
Copeland-CCWM for three candidates is in P
(in both the unique-winner and nonunique-winner model).

Proof. We show that: If Copeland with three candidates has a CCWM,
then it has a CCWM where all manipulators vote identically.

And now. . . see blackboard. O



Konsiruktive Manipulation
Maximin with three Candidates is Easy to Manipulate

Maximin (a.k.a. Simpson) voting: For each ¢c,d € C, ¢ # d, let again
N(c,d) be the number of voters who prefer c to d.
@ The maximin score of c is

MScore(c) = minN(c,d).
d#c

@ Whoever has the maximum MScore wins.

Theorem (Conitzer, Sandholm, and Lang (2007))
Maximin-CCWM for three candidates is in P
(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Maximin with three candidates has a CCWM,
then it has a CCWM where all manipulators vote identically.
And now. .. see blackboard. O
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Konstrukiive Manipulation
Upper bounds are inherited downward w.r.t. <h,

Corollary
All more restrictive variants of the manipulation problem are in P for:

@ plurality (for any number of candidates),
@ regular cup (for any number of candidates),

@ Copeland (for at most three candidates), and

@ maximin (for at most three candidates).
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Konstrukdive Manipulation
STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds inm — 1
rounds. In each round:

@ A candidate with lowest plurality score is eliminated (using some
tie-breaking rule if needed) and

@ all votes for this candidate transfer to the next remaining candidate
in this vote’s order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))
STV-CONSTRUCTIVE MANIPULATION is NP-complete. J
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Konstruktive Manipulation
STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.

To prove NP-hardness of STV-CONSTRUCTIVE MANIPULATION, we
reduce from the following NP-complete problem:

Name: EXACT COVER BY THREE-SETS (X3C).
Given: @ AsetB ={bj,by,...,bgn}, m>1, and
@ acollection § = {S1,S,,...,Sn} of subsets S; C B
with ||Sj|| = 3 foreachi, 1 <i <n.
Question: Is there a subcollection S’ C S such that each element of
B occurs in exactly one set in §'?
In other words, does there exist an index set
| € {1,2,...,n} with [[I| = m such that | JS; = B?
il
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Konstruktive Manipulation
STV-CM is NP-complete: The Candidates

Given an instance (B, S) of X3C with

B = {bi,by,...,bsm}
= {81’82’--->Sn}

wherem > 1, S; C B with ||S;|| = 3 for each i, 1 <i < n, construct an
election (C,V U {s}) with manipulator s and 5n+ 3(m + 1) candidates:

© “possible winners”: ¢ and w;

Q ‘first losers™ ay,ay,...,a, and a;,ay, ..., an;
@ “w-bloc™ bg,by,...,bam;

© “second line™ dq,d>,...,d, and dq,dy, ..., dn:
@ ‘“garbage collectors™ g1,92,...,0n.
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STV-CM is NP-complete: The Properties
Property 1: a;,ay,...,a, and a, ay, ..., a, are among the first 3n
candidates to be eliminated.
Property 2: Letl = {i \ a; is eliminated prior to & }. Then
c can be made win (C,V U{s}) <= lisa 3-cover.

Property 3: @ Forany | C {1,2,...,n}, there is a preference for s
such that

aj is eliminated priortoa;, < i€l.

© Such a preference for s is constructed as follows:

@ Ifi € | then place a; in the ith position of s.
o Ifi ¢ | then place a; in the ith position of s.
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: The Nonmanlpulatlve \oters

(D 12n votes:
(2) 12n-1 votes: w ¢
(3) 10n 4+ 2m votes: bp w ¢
(4) Foreachie{1,2,...,3m}, 12n -2 votes: b w ¢
(5) Foreachje{1,2,...,n}, 12n votes: g W C
(6) Foreachje {1,2,...,n}, 6n+4j—5 wvotes: d dj w ¢
and if S; = {by, by, b;} then 2 wvotes: di by w ¢
2 votes: di by w c
2 votes: di b, w ¢
(7) Foreachje {1,2,...,n}, 6n+4—-1 votess d; d w ¢
2 votes: di by w ¢
(8) Foreachje {1,2,...,n}, 6n+4j—3 wvotes: a g W C
1 wvote: & d g w
2 votes: & @ g 2w
(9) Foreachje {1,2,...,n}, 6n+4j—3 wvotes: @ g W C
1 wvote: @ d; g w c
2 votes: @ @&a O W C
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Konstrukdive Manipulation
STV-CM is NP-complete:
Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))

@ Exactly one of dj and d; will be among the first 3n candidates to
be eliminated.

@ Candidate ¢ will win if and only if
J = {j | dj is among the first 3n candidates to be eliminated}

is the index set of an exact 3-cover for S.

Proof: See blackboard. O



Konstrukdive Manipulation
STV-CM is NP-complete: The Manipulor’s Preference

Lemma (Bartholdi and Orlin (1991))
Let| C {1,2,...,n} and consider the strategic preference of
manipulator s in which the ith candidateis @ &;ifi € and
@ aifi&l.
Then the order in which the first 3n candidates are eliminated is:
© The (3i — 2)nd candidate to be eliminatedis e 3 ifi € | and
o aifi Zl.
@ The (3i — 1)st candidate to be eliminated is e d; ifi € | and
o d;ifi&l.

© The 3ith candidate to be eliminatedis e a; ifi €1 and

o & ifidl.
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Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality }-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007))

{Scoring-Protocols without Plurality}-CONSTRUCTIVE COALITIONAL
WEIGHTED MANIPULATION for three candidates is NP-complete.

Remark:
© For two candidates every scoring protocol is easy to manipulate.

© Plurality is easy to manipulate for any number of candidates.

@ In particular, Veto-CCWM and Borda-CCWM for three candidates
are NP-complete.

© The above theorem was independently proven by Hemaspaandra
& Hemaspaandra (2007) and Procaccia & Rosenschein (2006).
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Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality }-CCWM:
Reduction from PARTITION

Proof: Membership in NP is clear.

Let o = (a1, ap, ar3) be a scoring protocol other than plurality.
To prove NP-hardness of a-CCWM, we reduce from the following
NP-complete problem:

Name: PARTITION.
Given: A nonempty sequence (kj, Kz, ..., kn) of positive integers
n

such that ) _k; is an even number.
i—1

Question: Does there exist a subset A C {1,2,...,n} such that
Sk= Y ke
ieA ie{1,2,...n}—A
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Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality }-CCWM:
Reduction from PARTITION

n
Given an instance (ky, Kz, . .., kn) of PARTITION with ) " ki = 2K for
i=1
some integer K, construct an election (C,V U S) with C = {a,b,p} and

Vote Weight Preference
(2a; —az)K —1 a b p
(2a1 — az)K -1 b a P

S: Foreachie {1,2,...,n}, (a1+ az)k
See blackbord for the proof of:

(kK1,k2,...,Kn) € PARTITION <= p can be made win (C,V US). O
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Konstrukdive Manipulation
Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION
for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of
Copeland-CCWM, we again reduce from PARTITION.

n
Given an instance (ky, ko, ... ,k,) of PARTITION with Z k; = 2K for

i=1
some integer K, construct an election

(C,V US)

with C = {a, b, c,p} and the following votes in V U S.



Konstrukdive Manipulation
Copeland-CCWM for four Candidates is Hard

Vote Weight Preference

V. 2K 42 p a b c
2K 42 c p b a
K+1 a b cp
K+1 b ac p
S: Foreachie{1,2,...,n}, Ki

See blackbord for the proof of:
(kK1,k2,...,Kn) € PARTITION <= p can be made win (C,V US). O
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Konstruktive Manipulation
Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for
four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of
Maximin-CCWM, we again reduce from PARTITION.

n
Given an instance (ky, ko, ... ,k,) of PARTITION with Z k; = 2K for

i=1
some integer K, construct an election

(C,VUS)

with C = {a, b, c,p} and the following votes in V U S.



Konstruktive Manipulation
Maximin-CCWM for four Candidates is Hard

Vote Weight Preference

V. 7K —1 a b cp
7K —1 b ¢ ap
4K -1 ¢ a b p
5K p c ab
S: Foreachie{1,2,...,n}, 2k;

See blackbord for the proof of:
(kK1,k2,...,Kn) € PARTITION <= p can be made win (C,V US). O
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Konstruktive Manipulation
STV-CCWAM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for
three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of
STV-CCWM, we again reduce from PARTITION.

n
Given an instance (ky, ko, ... ,k,) of PARTITION with Z k; = 2K for

i=1
some integer K, construct an election

(C,V US)

with C = {a, b, p} and the following votes in V U S.



Konstruktive Manipulation
STV-CCWAM for three Candidates is Hard

Vote Weight Preference

Vo 6K — 1 b p a
4K a b p

4K p a b

S: Foreachie{1,2,...,n}, 2k;
See blackbord for the proof of:

(k1,Kz,...,ky) € PARTITION <= p canbe made win (C,V US). O
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Destruktive Manipulation
Destructive Manipulation

Definition (Destructive Coalitional Weighted Manipulation)
Let £ be some voting system.

Name: £-DESTRUCTIVE COALITIONAL WEIGHTED
MANIPULATION (£-DCWM).

Given: @ A set C of candidates,
@ alist V of nonmanipulative voters over C each having
a nonnegative integer weight,
@ a list of the weights of the manipulators in S (whose
votes over C are still unspecified) with V NS = (), and
@ a distinguished candidate c € C.

Question: Can the preferences of the voters in S be set such that c
is not a £-winner of (C,V US)?
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Manipulation Destruktive Manipulation

Theorem (Conitzer, Sandholm, and Lang (2007))
Let £ be a voting system such that:

@ Each candidate gets a numerical score based on the votes, and
all candidates with the highest score win.

@ The score function is monotonic: If changing a vote v satisfies

{b| v prefers a to b before the change}

C {b|v prefers a to b after the change},

then a’s score does not decrease.
@ Winner determination in £ can be done in polynomial time.
Then £E-DCWM is in P.

Proof: See blackbord. O



Corollary (Conitzer, Sandholm, and Lang (2007))
For any number of candidates, DCWM is in P for
@ Borda,
@ veto,
@ Copeland, and

@ maximin.

Remark: Since destructive manipulation can be harder than
constructive manipulation by at most a factor of m — 1 (where m is the
number of candidates), DCWM is in P for

@ plurality and
@ regular cup

for any number of candidates.
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Destruktive Manipulation
STV-DCWAM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-DESTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three
candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of
STV-DCWM, we again reduce from PARTITION.

n
Given an instance (ky, ko, ... ,k,) of PARTITION with Z k; = 2K for

i=1
some integer K, construct an election

(C,V US)

with C = {a,b,d} and the following votes in V U S.



Destruktive Manipulation
STV-DCWAM for three Candidates is Hard

Vote Weight Preference
Vo 6K a d b
6K b d a
8K —1 d a b
S: Foreachie{1,2,...,n}, 2k;

See blackbord for the proof of:

(k1,kz,...,ky) € PARTITION <= d can be made
to notwin (C,V US). O
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Destruktive Manipulation
Overview: Results for CCWM

# of Candidates || 2 3 >4
Plurality P P P
Regular Cup P P P
Copeland P P NP-complete
Maximin P P NP-complete
Veto P | NP-complete | NP-complete
Borda P | NP-complete | NP-complete
STV P | NP-complete | NP-complete

Table: Results for Constructive Coalitional Weighted Manipulation

J. Rothe (HHU Dusseldorf)

Wahlsysteme |

35/36



Manipulation Destruktive Manipulation

Overview: Results for DCWM

# of Candidates || 2 >3
Plurality P P
Regular Cup P P
Copeland P P
Maximin P P

Veto P P
Borda P P

STV P | NP-complete

Table: Results for Destructive Coalitional Weighted Manipulation
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