
Manipulation Grundlegende Definitionen

Manipulation: Strategic Voting

Example

Consider the Borda election with candidates a, b, and c and the

following votes:

Sincere Strategic

Votes Votes

points : 2 1 0 2 1 0

5 votes : a b c a b c

5 votes : b a c ⇒ b c a

1 vote : c a b c a b

Borda Borda

winner a winner b
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Manipulation Grundlegende Definitionen

Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)

Let E be some voting system.

Name: E-CONSTRUCTIVE COALITIONAL MANIPULATION

(E-CCM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C,

a list S of manipulative voters (whose votes over C

are still unspecified) with V ∩ S = ∅, and

a distinguished candidate c ∈ C.

Question: Is there a way to set the preferences of the voters in S

such that, under election system E , c is a winner of

election (C, V ∪ S)?
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Manipulation Grundlegende Definitionen

Variants of the Manipulation Problem

Remark: Variants:

E-DESTRUCTIVE COALITIONAL MANIPULATION (E-DCM) is the

same with “c is not a winner of (C, V ∪ S).”

If ‖S‖ = 1, we obtain the single-manipulator problems:

E-CONSTRUCTIVE MANIPULATION (E-CM) and

E-DESTRUCTIVE MANIPULATION (E-DM).

Voters can also be weighted (see next slide).

These problems can also be defined in the “unique-winner” model.
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Manipulation Grundlegende Definitionen

Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation)

Let E be some voting system.

Name: E-CONSTRUCTIVE (DESTRUCTIVE) COALITIONAL

WEIGHTED MANIPULATION (E-CCWM / E-DCWM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C each having

a nonnegative integer weight,

a list of the weights of the manipulators in S (whose

votes over C are still unspecified) with V ∩S = ∅, and

a distinguished candidate c ∈ C.

Question: Can the preferences of the voters in S be set such that c

is a E-winner (is not an E-winner) of (C, V ∪ S)?
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Manipulation Grundlegende Definitionen

Some Basic Complexity Classes

Definition
1 FP denotes the class of polynomial-time computable total

functions mapping from Σ∗ to Σ∗.

2 P denotes the class of problems that can be decided in polynomial

time (i.e., via a deterministic polynomial-time Turing machine).

3 NP denotes the class of problems that can be accepted in

polynomial time (i.e., via a nondeterministic polynomial-time

Turing machine).
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Manipulation Grundlegende Definitionen

Some Basic Complexity Classes

Remark:

Intuitively, FP and P, respectively, capture feasibility/efficiency of

computing functions and solving decision problems.

A ∈ NP if and only if there exist a set B ∈ P and a polynomial p

such that for each x ∈ Σ∗,

x ∈ A ⇐⇒ (∃w) [|w | ≤ p(|x |) and (x , w) ∈ B].

That is, NP is the class of problems whose YES instances can be

easily checked.

Central open question of TCS: P =? NP

Examples of problems in NP: SAT, TRAVELING SALESPERSON

PROBLEM, VERTEX COVER, CLIQUE, HAMILTON CIRCUIT, . . .
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Manipulation Grundlegende Definitionen

NP in Ancient Times

Maennlein?

janein nein nein nein nein nein nein nein

Wie heißt das

Kaspar?
Melchior?

Balthasar?
Rippenbiest?

Hammelswade?
Schnuerbein?

Kunz?
Heinz?

Rumpelstilzchen?

Figure: Nondeterministic Guessing and Deterministic Checking
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Manipulation Grundlegende Definitionen

Pol-Time Many-One Reducibility and Completeness

Definition

Let Σ be an alphabet and A, B ⊆ Σ∗. Let C be any complexity class.

1 Define the polynomial-time many-one reducibility, denoted by ≤p
m,

as follows: A≤p
m B if there is a function f ∈ FP such that

(∀x ∈ Σ∗) [x ∈ A ⇐⇒ f (x) ∈ B].

2 A set B is ≤p
m-hard for C (or C-hard) if A≤p

m B for each A ∈ C.

3 A set B is ≤p
m-complete for C (or C-complete) if

1 B is ≤p
m-hard for C (lower bound) and

2 B ∈ C (upper bound).

4 C is closed under the ≤p
m-reducibility (≤p

m-closed, for short) if

(A≤p
m B and B ∈ C) =⇒ A ∈ C.
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Manipulation Grundlegende Definitionen

Properties of ≤p
m

1 A≤p
m B implies A≤p

m B, yet in general it is not true that A≤p
m A.

2 ≤p
m is a reflexive and transitive, yet not antisymmetric relation.

3 P and NP are ≤p
m-closed.

That is, upper bounds are inherited downward with respect to ≤p
m.

4 If A≤p
m B and A is ≤p

m-hard for some complexity class C, then B is

≤p
m-hard for C.

That is, lower bounds are inherited upward with respect to ≤p
m.

5 Let C and D be any complexity classes. If C is ≤p
m-closed and B is

≤p
m-complete for D, then D ⊆ C ⇐⇒ B ∈ C.

In particular, if B is NP-complete, then

P = NP ⇐⇒ B ∈ P.
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Manipulation Konstruktive Manipulation

Plurality and Regular Cup are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of

candidates, in both the unique-winner and nonunique-winner model).

Proof:
1 For plurality, the manipulators simply check if c wins when they all

rank c first.

If so, they have found a successful strategy.

If not, no strategy can make c win.

2 For the regular cup protocol (given the assignment of candidates

to the leaves of the binary balanced tree), see blackboard. ❑
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Manipulation Konstruktive Manipulation

Copeland with three Candidates is Easy to Manipulate

Copeland voting: For each c, d ∈ C, c 6= d ,

let N(c, d) be the number of voters who prefer c to d ,

let C(c, d) = 1 if N(c, d) > N(d , c) and

C(c, d) = 1/2 if N(c, d) = N(d , c).

The Copeland score of c is CScore(c) =
∑

d 6=c C(c, d).

Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Copeland with three candidates has a CCWM,

then it has a CCWM where all manipulators vote identically.

And now. . . see blackboard. ❑
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Manipulation Konstruktive Manipulation

Maximin with three Candidates is Easy to Manipulate

Maximin (a.k.a. Simpson) voting: For each c, d ∈ C, c 6= d , let again

N(c, d) be the number of voters who prefer c to d .

The maximin score of c is

MScore(c) = min
d 6=c

N(c, d).

Whoever has the maximum MScore wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Maximin with three candidates has a CCWM,

then it has a CCWM where all manipulators vote identically.

And now. . . see blackboard. ❑
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Manipulation Konstruktive Manipulation

Upper bounds are inherited downward w.r.t. ≤p
m

Corollary

All more restrictive variants of the manipulation problem are in P for:

plurality (for any number of candidates),

regular cup (for any number of candidates),

Copeland (for at most three candidates), and

maximin (for at most three candidates).
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds in m − 1

rounds. In each round:

A candidate with lowest plurality score is eliminated (using some

tie-breaking rule if needed) and

all votes for this candidate transfer to the next remaining candidate

in this vote’s order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))

STV-CONSTRUCTIVE MANIPULATION is NP-complete.
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.

To prove NP-hardness of STV-CONSTRUCTIVE MANIPULATION, we

reduce from the following NP-complete problem:

Name: EXACT COVER BY THREE-SETS (X3C).

Given: A set B = {b1, b2, . . . , b3m}, m ≥ 1, and

a collection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B

with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each element of

B occurs in exactly one set in S ′?

In other words, does there exist an index set

I ⊆ {1, 2, . . . , n} with ‖I‖ = m such that
⋃

i∈I

Si = B?
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: The Candidates

Given an instance (B,S) of X3C with

B = {b1, b2, . . . , b3m}

S = {S1, S2, . . . , Sn}

where m ≥ 1, Si ⊆ B with ‖Si‖ = 3 for each i , 1 ≤ i ≤ n, construct an

election (C, V ∪ {s}) with manipulator s and 5n + 3(m + 1) candidates:

1 “possible winners”: c and w ;

2 “first losers”: a1, a2, . . . , an and a1, a2, . . . , an;

3 “w -bloc”: b0, b1, . . . , b3m;

4 “second line”: d1, d2, . . . , dn and d1, d2, . . . , dn;

5 “garbage collectors”: g1, g2, . . . , gn.
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: The Properties

Property 1: a1, a2, . . . , an and a1, a2, . . . , an are among the first 3n

candidates to be eliminated.

Property 2: Let I = {i
∣

∣ ai is eliminated prior to ai}. Then

c can be made win (C, V ∪ {s}) ⇐⇒ I is a 3-cover.

Property 3: 1 For any I ⊆ {1, 2, . . . , n}, there is a preference for s

such that

ai is eliminated prior to ai ⇐⇒ i ∈ I.

2 Such a preference for s is constructed as follows:
If i ∈ I then place ai in the ith position of s.
If i 6∈ I then place ai in the ith position of s.
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: The Nonmanipulative Voters
(1) 12n votes: c · · ·

(2) 12n − 1 votes: w c · · ·

(3) 10n + 2m votes: b0 w c · · ·

(4) For each i ∈ {1, 2, . . . , 3m}, 12n − 2 votes: bi w c · · ·

(5) For each j ∈ {1, 2, . . . , n}, 12n votes: gj w c · · ·

(6) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 5 votes: dj d j w c · · ·

and if Sj = {bx , by , bz} then 2 votes: dj bx w c · · ·

2 votes: dj by w c · · ·

2 votes: dj bz w c · · ·

(7) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 1 votes: d j dj w c · · ·

2 votes: d j b0 w c · · ·

(8) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj dj gj w c ·

2 votes: aj aj gj w c ·

(9) For each j ∈ {1, 2, . . . , n}, 6n + 4j − 3 votes: aj gj w c · · ·

1 vote: aj d j gj w c ·

2 votes: aj aj gj w c ·
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))

1 Exactly one of dj and d j will be among the first 3n candidates to

be eliminated.

2 Candidate c will win if and only if

J = {j
∣

∣ dj is among the first 3n candidates to be eliminated}

is the index set of an exact 3-cover for S.

Proof: See blackboard. ❑
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Manipulation Konstruktive Manipulation

STV-CM is NP-complete: The Manipulor’s Preference

Lemma (Bartholdi and Orlin (1991))

Let I ⊆ {1, 2, . . . , n} and consider the strategic preference of

manipulator s in which the ith candidate is ai if i ∈ I and

ai if i 6∈ I.

Then the order in which the first 3n candidates are eliminated is:

1 The (3i − 2)nd candidate to be eliminated is ai if i ∈ I and

ai if i 6∈ I.

2 The (3i − 1)st candidate to be eliminated is di if i ∈ I and

d i if i 6∈ I.

3 The 3i th candidate to be eliminated is ai if i ∈ I and

ai if i 6∈ I.

Proof: See blackboard. ❑
J. Rothe (HHU Düsseldorf) Wahlsysteme I 20 / 36



Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality}-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007))

{Scoring-Protocols without Plurality}-CONSTRUCTIVE COALITIONAL

WEIGHTED MANIPULATION for three candidates is NP-complete.

Remark:

1 For two candidates every scoring protocol is easy to manipulate.

2 Plurality is easy to manipulate for any number of candidates.

3 In particular, Veto-CCWM and Borda-CCWM for three candidates

are NP-complete.

4 The above theorem was independently proven by Hemaspaandra

& Hemaspaandra (2007) and Procaccia & Rosenschein (2006).
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Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality}-CCWM:

Reduction from PARTITION

Proof: Membership in NP is clear.

Let α = (α1, α2, α3) be a scoring protocol other than plurality.

To prove NP-hardness of α-CCWM, we reduce from the following

NP-complete problem:

Name: PARTITION.

Given: A nonempty sequence (k1, k2, . . . , kn) of positive integers

such that
n

∑

i=1

ki is an even number.

Question: Does there exist a subset A ⊆ {1, 2, . . . , n} such that
∑

i∈A

ki =
∑

i∈{1,2,...,n}−A

ki ?
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Manipulation Konstruktive Manipulation

{Scoring-Protocols without Plurality}-CCWM:

Reduction from PARTITION

Given an instance (k1, k2, . . . , kn) of PARTITION with
n

∑

i=1

ki = 2K for

some integer K , construct an election (C, V ∪ S) with C = {a, b, p} and

Vote Weight Preference

V : (2α1 − α2)K − 1 a b p

(2α1 − α2)K − 1 b a p

S : For each i ∈ {1, 2, . . . , n}, (α1 + α2)ki

See blackbord for the proof of:

(k1, k2, . . . , kn) ∈ PARTITION ⇐⇒ p can be made win (C, V ∪ S). ❑
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Manipulation Konstruktive Manipulation

Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION

for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

Copeland-CCWM, we again reduce from PARTITION.

Given an instance (k1, k2, . . . , kn) of PARTITION with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C, V ∪ S)

with C = {a, b, c, p} and the following votes in V ∪ S.
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Manipulation Konstruktive Manipulation

Copeland-CCWM for four Candidates is Hard

Vote Weight Preference

V : 2K + 2 p a b c

2K + 2 c p b a

K + 1 a b c p

K + 1 b a c p

S : For each i ∈ {1, 2, . . . , n}, ki

See blackbord for the proof of:

(k1, k2, . . . , kn) ∈ PARTITION ⇐⇒ p can be made win (C, V ∪ S). ❑
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Manipulation Konstruktive Manipulation

Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

Maximin-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for

four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

Maximin-CCWM, we again reduce from PARTITION.

Given an instance (k1, k2, . . . , kn) of PARTITION with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C, V ∪ S)

with C = {a, b, c, p} and the following votes in V ∪ S.
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Manipulation Konstruktive Manipulation

Maximin-CCWM for four Candidates is Hard

Vote Weight Preference

V : 7K − 1 a b c p

7K − 1 b c a p

4K − 1 c a b p

5K p c a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

See blackbord for the proof of:

(k1, k2, . . . , kn) ∈ PARTITION ⇐⇒ p can be made win (C, V ∪ S). ❑
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Manipulation Konstruktive Manipulation

STV-CCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for

three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

STV-CCWM, we again reduce from PARTITION.

Given an instance (k1, k2, . . . , kn) of PARTITION with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C, V ∪ S)

with C = {a, b, p} and the following votes in V ∪ S.
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Manipulation Konstruktive Manipulation

STV-CCWM for three Candidates is Hard

Vote Weight Preference

V : 6K − 1 b p a

4K a b p

4K p a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

See blackbord for the proof of:

(k1, k2, . . . , kn) ∈ PARTITION ⇐⇒ p can be made win (C, V ∪ S). ❑

J. Rothe (HHU Düsseldorf) Wahlsysteme I 29 / 36



Manipulation Destruktive Manipulation

Destructive Manipulation

Definition (Destructive Coalitional Weighted Manipulation)

Let E be some voting system.

Name: E-DESTRUCTIVE COALITIONAL WEIGHTED

MANIPULATION (E-DCWM).

Given: A set C of candidates,

a list V of nonmanipulative voters over C each having

a nonnegative integer weight,

a list of the weights of the manipulators in S (whose

votes over C are still unspecified) with V ∩S = ∅, and

a distinguished candidate c ∈ C.

Question: Can the preferences of the voters in S be set such that c

is not a E-winner of (C, V ∪ S)?
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Manipulation Destruktive Manipulation

Theorem (Conitzer, Sandholm, and Lang (2007))

Let E be a voting system such that:

Each candidate gets a numerical score based on the votes, and

all candidates with the highest score win.

The score function is monotonic: If changing a vote v satisfies

{b
∣

∣ v prefers a to b before the change}

⊆ {b
∣

∣ v prefers a to b after the change},

then a’s score does not decrease.

Winner determination in E can be done in polynomial time.

Then E-DCWM is in P.

Proof: See blackbord. ❑
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Manipulation Destruktive Manipulation

Corollary (Conitzer, Sandholm, and Lang (2007))

For any number of candidates, DCWM is in P for

Borda,

veto,

Copeland, and

maximin.

Remark: Since destructive manipulation can be harder than

constructive manipulation by at most a factor of m − 1 (where m is the

number of candidates), DCWM is in P for

plurality and

regular cup

for any number of candidates.
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Manipulation Destruktive Manipulation

STV-DCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))

STV-DESTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three

candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of

STV-DCWM, we again reduce from PARTITION.

Given an instance (k1, k2, . . . , kn) of PARTITION with
n

∑

i=1

ki = 2K for

some integer K , construct an election

(C, V ∪ S)

with C = {a, b, d} and the following votes in V ∪ S.
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Manipulation Destruktive Manipulation

STV-DCWM for three Candidates is Hard

Vote Weight Preference

V : 6K a d b

6K b d a

8K − 1 d a b

S : For each i ∈ {1, 2, . . . , n}, 2ki

See blackbord for the proof of:

(k1, k2, . . . , kn) ∈ PARTITION ⇐⇒ d can be made

to not win (C, V ∪ S). ❑
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Manipulation Destruktive Manipulation

Overview: Results for CCWM

# of Candidates 2 3 ≥ 4

Plurality P P P

Regular Cup P P P

Copeland P P NP-complete

Maximin P P NP-complete

Veto P NP-complete NP-complete

Borda P NP-complete NP-complete

STV P NP-complete NP-complete

Table: Results for Constructive Coalitional Weighted Manipulation
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Manipulation Destruktive Manipulation

Overview: Results for DCWM

# of Candidates 2 ≥ 3

Plurality P P

Regular Cup P P

Copeland P P

Maximin P P

Veto P P

Borda P P

STV P NP-complete

Table: Results for Destructive Coalitional Weighted Manipulation
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