Manipulation: Strategic Voting

Example

Consider the Borda election with candidates *a*, *b*, and *c* and the following votes:

	S	ince	re		St	rateg	gic	
	١	/otes	5		١	/otes	5	
points :	2	1	0		2	1	0	
5 votes :	а	b	С		а	b	С	
5 votes :	b	а	С	\Rightarrow	b	С	а	
1 vote :	С	а	b		С	а	b	
	E	Borda	a		E	Borda	a	
	winner <i>a</i> winner <i>b</i>			b				
- 1 - 1		10/-1-1-		1				

Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)

- Let \mathcal{E} be some voting system.
 - Name: *E*-CONSTRUCTIVE COALITIONAL MANIPULATION (*E*-CCM).
 - Given: A set C of candidates,
 - a list V of nonmanipulative voters over C,
 - a list S of manipulative voters (whose votes over C are still unspecified) with V ∩ S = Ø, and
 - a distinguished candidate $c \in C$.

Question: Is there a way to set the preferences of the voters in S such that, under election system \mathcal{E} , c is a winner of election ($C, V \cup S$)?

Variants of the Manipulation Problem

Remark: Variants:

- \mathcal{E} -DESTRUCTIVE COALITIONAL MANIPULATION (\mathcal{E} -DCM) is the same with "*c* is not a winner of ($C, V \cup S$)."
- If ||S|| = 1, we obtain the single-manipulator problems:
 - *E*-CONSTRUCTIVE MANIPULATION (*E*-CM) and
 - *E*-DESTRUCTIVE MANIPULATION (*E*-DM).
- Voters can also be weighted (see next slide).
- These problems can also be defined in the "unique-winner" model.

(日)

Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation) Let \mathcal{E} be some voting system.

Name: *E*-CONSTRUCTIVE (DESTRUCTIVE) COALITIONAL WEIGHTED MANIPULATION (*E*-CCWM / *E*-DCWM).

- Given: A set C of candidates,
 - a list V of nonmanipulative voters over C each having a nonnegative integer weight,
 - a list of the weights of the manipulators in S (whose votes over C are still unspecified) with V ∩ S = Ø, and

• a distinguished candidate $c \in C$.

Question: Can the preferences of the voters in *S* be set such that *c* is a \mathcal{E} -winner (is not an \mathcal{E} -winner) of (*C*, *V* \cup *S*)?

Some Basic Complexity Classes

Definition

- FP denotes the class of polynomial-time computable total functions mapping from Σ* to Σ*.
- P denotes the class of problems that can be decided in polynomial time (i.e., via a deterministic polynomial-time Turing machine).
- NP denotes the class of problems that can be accepted in polynomial time (i.e., via a nondeterministic polynomial-time Turing machine).

(日)

Some Basic Complexity Classes

Remark:

- Intuitively, FP and P, respectively, capture feasibility/efficiency of computing functions and solving decision problems.
- A ∈ NP if and only if there exist a set B ∈ P and a polynomial p such that for each x ∈ Σ*,

$$x \in A \iff (\exists w) [|w| \le p(|x|) \text{ and } (x, w) \in B].$$

That is, NP is the class of problems whose YES instances can be easily checked.

- Central open question of TCS: P ₽ NP

J. Rothe (HHU Düsseldorf)

Wahlsysteme I

NP in Ancient Times

Figure: Nondeterministic Guessing and Deterministic Checking

J. Rothe	(HHU Düsseldorf)
----------	------------------

Wahlsysteme I

э

Pol-Time Many-One Reducibility and Completeness

Definition

Let Σ be an alphabet and $A, B \subseteq \Sigma^*$. Let C be any complexity class.

- Define the *polynomial-time many-one reducibility*, denoted by ≤^p_m, as follows: A ≤^p_m B if there is a function f ∈ FP such that (∀x ∈ Σ*) [x ∈ A ⇔ f(x) ∈ B].
- 2 A set *B* is \leq_m^p -hard for *C* (or *C*-hard) if $A \leq_m^p B$ for each $A \in C$.
- Solution A set B is \leq_{m}^{p} -complete for C (or C-complete) if
 - B is \leq_{m}^{p} -hard for C (lower bound) and
 - **2** $B \in C$ (upper bound).

C is closed under the \leq_m^p -reducibility (\leq_m^p -closed, for short) if $(A \leq_m^p B \text{ and } B \in \mathcal{C}) \implies A \in \mathcal{C}.$

Properties of \leq_m^p

- $A \leq_m^p B$ implies $\overline{A} \leq_m^p \overline{B}$, yet in general it is not true that $A \leq_m^p \overline{A}$.
- 2 \leq_{m}^{p} is a reflexive and transitive, yet not antisymmetric relation.
- If $A \leq_m^p B$ and A is \leq_m^p -hard for some complexity class C, then B is \leq_m^p -hard for C.

That is, lower bounds are inherited upward with respect to \leq_{m}^{p} .

Let C and D be any complexity classes. If C is ≤^p_m-closed and B is ≤^p_m-complete for D, then D ⊆ C ⇔ B ∈ C.
In particular, if B is NP-complete, then

$$\mathbf{P} = \mathbf{N}\mathbf{P} \iff \mathbf{B} \in \mathbf{P}.$$

Plurality and Regular Cup are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))

Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of candidates, in both the unique-winner and nonunique-winner model).

Proof:

- For plurality, the manipulators simply check if c wins when they all rank c first.
 - If so, they have found a successful strategy.
 - If not, no strategy can make c win.
- For the regular cup protocol (given the assignment of candidates to the leaves of the binary balanced tree), see blackboard.

Copeland with three Candidates is Easy to Manipulate

Copeland voting: For each $c, d \in C, c \neq d$,

- let N(c, d) be the number of voters who prefer c to d,
- let C(c, d) = 1 if N(c, d) > N(d, c) and
- C(c, d) = 1/2 if N(c, d) = N(d, c).
- The Copeland score of c is $CScore(c) = \sum_{d \neq c} C(c, d)$.
- Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))

Copeland-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Copeland with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically. And now...see blackboard.

J. Rothe (HHU Düsseldorf)

Maximin with three Candidates is Easy to Manipulate

Maximin (a.k.a. Simpson) voting: For each $c, d \in C$, $c \neq d$, let again N(c, d) be the number of voters who prefer c to d.

• The maximin score of c is

$$\underline{MScore}(c) = \min_{d \neq c} N(c, d).$$

Whoever has the maximum MScore wins.

Theorem (Conitzer, Sandholm, and Lang (2007)) Maximin-CCWM for three candidates is in P

(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Maximin with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically. And now...see blackboard.

J. Rothe (HHU Düsseldorf)

Upper bounds are inherited downward w.r.t. \leq_m^p

Corollary

All more restrictive variants of the manipulation problem are in P for:

- plurality (for any number of candidates),
- regular cup (for any number of candidates),
- Copeland (for at most three candidates), and
- maximin (for at most three candidates).

STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds in m - 1 rounds. In each round:

- A candidate with lowest plurality score is eliminated (using some tie-breaking rule if needed) and
- all votes for this candidate transfer to the next remaining candidate in this vote's order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))

STV-CONSTRUCTIVE MANIPULATION *is* NP-complete.

STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.

To prove NP-hardness of STV-CONSTRUCTIVE MANIPULATION, we reduce from the following NP-complete problem:

Name: EXACT COVER BY THREE-SETS (X3C).

Question: Is there a subcollection $S' \subseteq S$ such that each element of *B* occurs in exactly one set in S'? In other words, does there exist an index set $I \subseteq \{1, 2, ..., n\}$ with ||I|| = m such that $\bigcup_{i \in I} S_i = B$?

R

STV-CM is NP-complete: The Candidates

Given an instance (B, S) of X3C with

$$B = \{b_1, b_2, \dots, b_{3m}\}$$
$$S = \{S_1, S_2, \dots, S_n\}$$

where $m \ge 1$, $S_i \subseteq B$ with $||S_i|| = 3$ for each i, $1 \le i \le n$, construct an election (C, $V \cup \{s\}$) with manipulator s and 5n + 3(m + 1) candidates:

- (1) "possible winners": c and w;
- **2** "first losers": a_1, a_2, \ldots, a_n and $\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n$;
- **3** "w-bloc": b_0, b_1, \ldots, b_{3m} ;
- Second line": d_1, d_2, \ldots, d_n and $\overline{d}_1, \overline{d}_2, \ldots, \overline{d}_n$;
- **(a)** "garbage collectors": g_1, g_2, \ldots, g_n .

Konstruktive Manipulation

STV-CM is NP-complete: The Properties

Property 1: a_1, a_2, \ldots, a_n and $\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_n$ are among the first 3n candidates to be eliminated.

Property 2: Let $I = \{i \mid \overline{a}_i \text{ is eliminated prior to } a_i\}$. Then

c can be made win $(C, V \cup \{s\}) \iff I$ is a 3-cover.

Property 3: • For any $I \subseteq \{1, 2, ..., n\}$, there is a preference for s such that

 \overline{a}_i is eliminated prior to $a_i \iff i \in I$.

Such a preference for s is constructed as follows:

- If $i \in I$ then place a_i in the *i*th position of s.
- If $i \notin I$ then place \overline{a}_i in the *i*th position of s.

STV-CM is NP-complete: The Nonmanipulative Voters

(1)	· · · · ·	12 <i>n</i>	votes:	c				
(2)		12 <i>n</i> – 1	votes:	w	С			
(3)		10 <i>n</i> + 2 <i>m</i>	votes:	b_0	W	с		
(4)	For each $i \in \{1, 2,, 3m\}$,	12 <i>n</i> – 2	votes:	b i	W	С		
(5)	For each $j \in \{1, 2,, n\}$,	12 <i>n</i>	votes:	g_i	W	С		
(6)	For each $j \in \{1, 2,, n\}$,	6 <i>n</i> + 4 <i>j</i> - 5	votes:	d_j	\overline{d}_j	W	С	
	and if $S_j = \{b_x, b_y, b_z\}$ then	2	votes:	d_j	b _x	W	С	• • •
		2	votes:	d_j	by	W	С	•••
		2	votes:	di	bz	W	С	
(7)	For each $j \in \{1, 2,, n\}$,	6 <i>n</i> + 4 <i>j</i> - 1	votes:	\overline{d}_j	d_j	w	с	
		2	votes:	\overline{d}_i	b_0	W	С	
(8)	For each $j \in \{1, 2,, n\}$,	6n + 4j - 3	votes:	a_j	g_j	w	С	
		1	vote:	a_j	d_j	g_{j}	W	С
		2	votes:	ai	\overline{a}_i	\boldsymbol{g}_i	W	С
(9)	For each $j \in \{1, 2,, n\}$,	6 <i>n</i> + 4 <i>j</i> - 3	votes:	\overline{a}_{j}	g_j	w	с	
		1	vote:	\overline{a}_{j}	\overline{d}_j	g_{j}	W	С
		2	votes:	ā	aj	g j	W	, C 2 ()
J. F	Rothe (HHU Düsseldorf)	Wahlsvsteme I						18/36

STV-CM is NP-complete:

Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))

• Exactly one of d_j and \overline{d}_j will be among the first 3n candidates to be eliminated.

Candidate c will win if and only if

 $J = \{j \mid d_j \text{ is among the first } 3n \text{ candidates to be eliminated} \}$

is the index set of an exact 3-cover for S.

Proof: See blackboard.

J. Rothe	(HHU Düsseldorf)
----------	------------------

STV-CM is NP-complete: The Manipulor's Preference

Lemma (Bartholdi and Orlin (1991)) Let $I \subseteq \{1, 2, ..., n\}$ and consider the strategic preference of • a_i if $i \in I$ and manipulator s in which the ith candidate is • \overline{a}_i if $i \notin I$. Then the order in which the first 3n candidates are eliminated is: The (3i – 2)nd candidate to be eliminated is • \overline{a}_i if $i \in I$ and • a_i if $i \notin I$. The (3i – 1)st candidate to be eliminated is • d_i if $i \in I$ and • \overline{d}_i if $i \notin I$. The 3*i*th candidate to be eliminated is • a_i if $i \in I$ and • $\overline{\mathbf{a}}_i$ if $i \notin I$.

{Scoring-Protocols without Plurality}-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007)) {Scoring-Protocols without Plurality}-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three candidates is NP-complete.

Remark:

- For two candidates every scoring protocol is easy to manipulate.
- Plurality is easy to manipulate for any number of candidates.
- In particular, Veto-CCWM and Borda-CCWM for three candidates are NP-complete.
- The above theorem was independently proven by Hemaspaandra & Hemaspaandra (2007) and Procaccia & Rosenschein (2006).

{Scoring-Protocols without Plurality}-CCWM: Reduction from PARTITION

Proof: Membership in NP is clear.

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ be a scoring protocol other than plurality. To prove NP-hardness of α -CCWM, we reduce from the following NP-complete problem:

Name: PARTITION. Given: A nonempty sequence $(k_1, k_2, ..., k_n)$ of positive integers such that $\sum_{i=1}^{n} k_i$ is an even number. Question: Does there exist a subset $A \subseteq \{1, 2, ..., n\}$ such that

$$\sum_{i \in A} k_i = \sum_{i \in \{1, 2, \dots, n\} - A} k_i ?$$

{Scoring-Protocols without Plurality}-CCWM: Reduction from PARTITION

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer *K*, construct an election $(C, V \cup S)$ with $C = \{a, b, p\}$ and

	Vote Weight	Pre	ferei	nce	
V :	$(2\alpha_1 - \alpha_2)K - 1$	а	b	р	
	$(2\alpha_1 - \alpha_2)K - 1$	b	а	р	

S: For each $i \in \{1, 2, \dots, n\}$, $(\alpha_1 + \alpha_2)k_i$

See blackbord for the proof of:

 $(k_1, k_2, \ldots, k_n) \in \mathsf{PARTITION} \iff p \text{ can be made win } (C, V \cup S). \square$

Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007)) Copeland-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Copeland-CCWM, we again reduce from PARTITION.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^n k_i = 2K$ for some integer *K*, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, c, p\}$ and the following votes in $V \cup S$.

Copeland-CCWM for four Candidates is Hard

	Vote Weight	Pr	ren	nce	
V :	2K+2	р	а	b	С
	2K+2	С	р	b	а
	<i>K</i> + 1	а	b	с	р
	<i>K</i> + 1	b	а	С	р

S: For each $i \in \{1, 2, ..., n\}$, k_i

See blackbord for the proof of:

 $(k_1, k_2, \dots, k_n) \in \mathsf{PARTITION} \iff p \text{ can be made win } (C, V \cup S). \square$

Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007)) Maximin-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Maximin-CCWM, we again reduce from PARTITION.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^n k_i = 2K$ for some integer *K*, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, c, p\}$ and the following votes in $V \cup S$.

Maximin-CCWM for four Candidates is Hard

	Vote Weight	Pr	efe	ren	ce
V :	7 <i>K</i> – 1	а	b	С	р
	7 <i>K</i> – 1	b	С	а	р
	4 <i>K</i> – 1	С	а	b	р
	5 <i>K</i>	р	С	а	b

S: For each $i \in \{1, 2, \ldots, n\}$, $2k_i$

See blackbord for the proof of:

 $(k_1, k_2, \dots, k_n) \in \mathsf{PARTITION} \iff p \text{ can be made win } (C, V \cup S). \square$ J. Rothe (HHU Düsseldorf) Wahlsysteme I 27/36

STV-CCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007)) STV-CONSTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of STV-CCWM, we again reduce from PARTITION.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer *K*, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, p\}$ and the following votes in $V \cup S$.

STV-CCWM for three Candidates is Hard

	Vote Weight	Pre	nce	
V :	6 <i>K</i> – 1	b	р	а
	4 <i>K</i>	а	b	р
	4 <i>K</i>	р	а	b

S: For each $i \in \{1, 2, ..., n\}$, $2k_i$

See blackbord for the proof of:

 $(k_1, k_2, \dots, k_n) \in \text{PARTITION} \iff p \text{ can be made win } (C, V \cup S). \square$

Destructive Manipulation

Definition (Destructive Coalitional Weighted Manipulation)

Let \mathcal{E} be some voting system.

Name: *E*-DESTRUCTIVE COALITIONAL WEIGHTED MANIPULATION (*E*-DCWM).

- Given: A set C of candidates,
 - a list V of nonmanipulative voters over C each having a nonnegative integer weight,
 - a list of the weights of the manipulators in S (whose votes over C are still unspecified) with V ∩ S = Ø, and
 - a distinguished candidate $c \in C$.

Question: Can the preferences of the voters in *S* be set such that *c* is not a \mathcal{E} -winner of $(C, V \cup S)$?

Theorem (Conitzer, Sandholm, and Lang (2007))

Let \mathcal{E} be a voting system such that:

- Each candidate gets a numerical score based on the votes, and all candidates with the highest score win.
- The score function is monotonic: If changing a vote v satisfies

 $\{b \mid v \text{ prefers a to b before the change}\}$

 $\subseteq \{b \mid v \text{ prefers a to b after the change}\},\$

then a's score does not decrease.

• Winner determination in \mathcal{E} can be done in polynomial time. Then \mathcal{E} -DCWM is in P.

Corollary (Conitzer, Sandholm, and Lang (2007))

For any number of candidates, DCWM is in P for

- Borda,
- veto,
- Copeland, and
- maximin.

Remark: Since destructive manipulation can be harder than constructive manipulation by at most a factor of m - 1 (where *m* is the number of candidates), DCWM is in P for

- plurality and
- regular cup

for any number of candidates.

STV-DCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007)) STV-DESTRUCTIVE COALITIONAL WEIGHTED MANIPULATION for three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of STV-DCWM, we again reduce from PARTITION.

Given an instance $(k_1, k_2, ..., k_n)$ of PARTITION with $\sum_{i=1}^{n} k_i = 2K$ for some integer *K*, construct an election

$$(C, V \cup S)$$

with $C = \{a, b, d\}$ and the following votes in $V \cup S$.

STV-DCWM for three Candidates is Hard

	Vote Weight	Pre	ferer	nce
<i>V</i> :	6 <i>K</i>	а	d	b
	6 <i>K</i>	b	d	а
	8 <i>K</i> – 1	d	а	b
S: For each $i \in \{1, 2,, n\}$,	2 <i>k</i> i			
See blackbord for the proof of:				
$(k_1, k_2, \ldots, k_n) \in PARTITION \Leftarrow$	\Rightarrow <i>d</i> can be matrix	ade		
	to not win (C, V (J S) .	

Overview: Results for CCWM

# of Candidates	2	3	≥ 4
Plurality	Р	Р	Р
Regular Cup	Р	Р	Р
Copeland	Р	Р	NP-complete
Maximin	Р	Р	NP-complete
Veto	Р	NP-complete	NP-complete
Borda	Р	NP-complete	NP-complete
STV	Р	NP-complete	NP-complete

Table: Results for Constructive Coalitional Weighted Manipulation

Overview: Results for DCWM

# of Candidates	2	\geq 3
Plurality	Р	Р
Regular Cup	Р	Р
Copeland	Р	Р
Maximin	Р	Р
Veto	Р	Р
Borda	Р	Р
STV	Р	NP-complete

Table: Results for Destructive Coalitional Weighted Manipulation

J. Rothe (HHU Düsseldorf)