Manipulation: Strategic Voting

Example

Consider the Borda election with candidates a, b, and c and the following votes:

Variants of the Manipulation Problem

Definition (Constructive Coalitional Manipulation)
Let \mathcal{E} be some voting system.
Name: \mathcal{E}-Constructive CoAlitional Manipulation (\mathcal{E}-CCM).

Given: - A set C of candidates,

- a list V of nonmanipulative voters over C,
- a list S of manipulative voters (whose votes over C are still unspecified) with $V \cap S=\emptyset$, and
- a distinguished candidate $c \in C$.

Question: Is there a way to set the preferences of the voters in S such that, under election system \mathcal{E}, c is a winner of election $(C, V \cup S)$?

Variants of the Manipulation Problem

Remark: Variants:

- \mathcal{E}-Destructive Coalitional Manipulation (\mathcal{E}-DCM) is the same with " c is not a winner of $(C, V \cup S)$."
- If $\|S\|=1$, we obtain the single-manipulator problems:
- \mathcal{E}-Constructive Manipulation (\mathcal{E}-CM) and
- \mathcal{E}-Destructive Manipulation (\mathcal{E}-DM).
- Voters can also be weighted (see next slide).
- These problems can also be defined in the "unique-winner" model.

Variants of the Manipulation Problem

Definition (Constructive Coalitional Weighted Manipulation) Let \mathcal{E} be some voting system.

Name: \mathcal{E}-Constructive (Destructive) Coalitional Weighted Manipulation (\mathcal{E}-CCWM / \mathcal{E}-DCWM).
Given: - A set C of candidates,

- a list V of nonmanipulative voters over C each having a nonnegative integer weight,
- a list of the weights of the manipulators in S (whose votes over C are still unspecified) with $V \cap S=\emptyset$, and
- a distinguished candidate $c \in C$.

Question: Can the preferences of the voters in S be set such that c is a \mathcal{E}-winner (is not an \mathcal{E}-winner) of $(C, V \cup S)$?

Some Basic Complexity Classes

Definition
(1) FP denotes the class of polynomial-time computable total functions mapping from Σ^{*} to Σ^{*}.
(2) P denotes the class of problems that can be decided in polynomial time (i.e., via a deterministic polynomial-time Turing machine).
(3) NP denotes the class of problems that can be accepted in polynomial time (i.e., via a nondeterministic polynomial-time Turing machine).

Some Basic Complexity Classes

Remark:

- Intuitively, FP and P, respectively, capture feasibility/efficiency of computing functions and solving decision problems.
- $A \in \mathrm{NP}$ if and only if there exist a set $B \in \mathrm{P}$ and a polynomial p such that for each $x \in \Sigma^{*}$,

$$
x \in A \quad \Longleftrightarrow \quad(\exists w)[|w| \leq p(|x|) \text { and }(x, w) \in B] .
$$

That is, NP is the class of problems whose YES instances can be easily checked.

- Central open question of TCS: P ? NP
- Examples of problems in NP: SAT, Traveling Salesperson Problem, Vertex Cover, Clique, Hamilton Circuit, ...

NP in Ancient Times

Figure: Nondeterministic Guessing and Deterministic Checking

Pol-Time Many-One Reducibility and Completeness

Definition

Let Σ be an alphabet and $A, B \subseteq \Sigma^{*}$. Let \mathcal{C} be any complexity class.
(1) Define the polynomial-time many-one reducibility, denoted by $\leq_{\mathrm{m}}^{\mathrm{p}}$, as follows: $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ if there is a function $f \in \mathrm{FP}$ such that

$$
\left(\forall x \in \Sigma^{*}\right)[x \in A \Longleftrightarrow f(x) \in B] .
$$

(2) A set B is $\leq_{\mathrm{m}}^{\mathrm{p}}$-hard for \mathcal{C} (or \mathcal{C}-hard) if $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ for each $A \in \mathcal{C}$.
(3) A set B is $\leq_{\mathrm{m}}^{\mathrm{p}}$-complete for \mathcal{C} (or \mathcal{C}-complete) if
(1) B is $\leq_{\mathrm{m}}^{\mathrm{p}}$-hard for \mathcal{C} (lower bound) and
(2) $B \in \mathcal{C}$ (upper bound).
(1) \mathcal{C} is closed under the $\leq_{\mathrm{m}}^{\mathrm{p}}$-reducibility ($\leq_{\mathrm{m}}^{\mathrm{p}}$-closed, for short) if

$$
\left(A \leq_{\mathrm{m}}^{\mathrm{p}} B \text { and } B \in \mathcal{C}\right) \Longrightarrow A \in \mathcal{C} .
$$

Properties of $\leq_{\mathrm{m}}^{\mathrm{p}}$

(1) $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ implies $\bar{A} \leq_{\mathrm{m}}^{\mathrm{p}} \bar{B}$, yet in general it is not true that $A \leq_{\mathrm{m}}^{\mathrm{p}} \bar{A}$.
(2) $\leq_{\mathrm{m}}^{\mathrm{p}}$ is a reflexive and transitive, yet not antisymmetric relation.
(3) P and NP are $\leq_{\mathrm{m}}^{\mathrm{p}}$-closed.

That is, upper bounds are inherited downward with respect to $\leq_{\mathrm{m}}^{\mathrm{p}}$.
(9) If $A \leq_{\mathrm{m}}^{\mathrm{p}} B$ and A is $\leq_{\mathrm{m}}^{\mathrm{p}}$-hard for some complexity class \mathcal{C}, then B is $\leq_{\mathrm{m}}^{\mathrm{p}}$-hard for \mathcal{C}.
That is, lower bounds are inherited upward with respect to $\leq_{\mathrm{m}}^{\mathrm{p}}$.
(3) Let \mathcal{C} and \mathcal{D} be any complexity classes. If \mathcal{C} is $\leq_{\mathrm{m}}^{\mathrm{p}}$-closed and B is $\leq_{\mathrm{m}}^{\mathrm{p}}$-complete for \mathcal{D}, then $\mathcal{D} \subseteq \mathcal{C} \Longleftrightarrow B \in \mathcal{C}$. In particular, if B is NP-complete, then

$$
\mathrm{P}=\mathrm{NP} \Longleftrightarrow B \in \mathrm{P} .
$$

Plurality and Regular Cup are Easy to Manipulate

Theorem (Conitzer, Sandholm, and Lang (2007))
Plurality-CCWM and Regular-Cup-CCWM are in P (for any number of candidates, in both the unique-winner and nonunique-winner model).

Proof:

(1) For plurality, the manipulators simply check if c wins when they all rank c first.

- If so, they have found a successful strategy.
- If not, no strategy can make c win.
(2) For the regular cup protocol (given the assignment of candidates to the leaves of the binary balanced tree), see blackboard.

Copeland with three Candidates is Easy to Manipulate

Copeland voting: For each $c, d \in C, c \neq d$,

- let $N(c, d)$ be the number of voters who prefer c to d,
- let $C(c, d)=1$ if $N(c, d)>N(d, c)$ and
- $C(c, d)=1 / 2$ if $N(c, d)=N(d, c)$.
- The Copeland score of c is $\operatorname{CScore}(c)=\sum_{d \neq c} C(c, d)$.
- Whoever has the maximum Copeland score wins.

Theorem (Conitzer, Sandholm, and Lang (2007))
Copeland-CCWM for three candidates is in P (in both the unique-winner and nonunique-winner model).

Proof: We show that: If Copeland with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically.
And now. . . see blackboard.

Maximin with three Candidates is Easy to Manipulate

Maximin (a.k.a. Simpson) voting: For each $c, d \in C, c \neq d$, let again $N(c, d)$ be the number of voters who prefer c to d.

- The maximin score of c is

$$
\operatorname{MScore}(c)=\min _{d \neq c} N(c, d)
$$

- Whoever has the maximum MScore wins.

Theorem (Conitzer, Sandholm, and Lang (2007))
Maximin-CCWM for three candidates is in P
(in both the unique-winner and nonunique-winner model).

Proof: We show that: If Maximin with three candidates has a CCWM, then it has a CCWM where all manipulators vote identically.
And now. . . see blackboard.

Upper bounds are inherited downward w.r.t. $\leq_{\mathrm{m}}^{\mathrm{p}}$

Corollary

All more restrictive variants of the manipulation problem are in P for:

- plurality (for any number of candidates),
- regular cup (for any number of candidates),
- Copeland (for at most three candidates), and
- maximin (for at most three candidates).

STV-CM is NP-complete

Single Transferable Vote (STV) for m candidates proceeds in $m-1$ rounds. In each round:

- A candidate with lowest plurality score is eliminated (using some tie-breaking rule if needed) and
- all votes for this candidate transfer to the next remaining candidate in this vote's order.

The last remaining candidate wins.

Theorem (Bartholdi and Orlin (1991))
STV-Constructive Manipulation is NP-complete.

STV-CM is NP-complete: Reduction from X3C

Proof: Membership in NP is clear.
To prove NP-hardness of STV-Constructive Manipulation, we reduce from the following NP-complete problem:

Name: Exact Cover by Three-Sets (X3C).
Given: - A set $B=\left\{b_{1}, b_{2}, \ldots, b_{3 m}\right\}, m \geq 1$, and

- a collection $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets $S_{i} \subseteq B$ with $\left\|S_{i}\right\|=3$ for each $i, 1 \leq i \leq n$.
Question: Is there a subcollection $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ such that each element of B occurs in exactly one set in \mathcal{S}^{\prime} ?
In other words, does there exist an index set
$I \subseteq\{1,2, \ldots, n\}$ with $\|I\|=m$ such that $\bigcup_{i \in I} S_{i}=B$?

STV-CM is NP-complete: The Candidates

Given an instance (B, \mathcal{S}) of X3C with

$$
\begin{aligned}
& B=\left\{b_{1}, b_{2}, \ldots, b_{3 m}\right\} \\
& \mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}
\end{aligned}
$$

where $m \geq 1, S_{i} \subseteq B$ with $\left\|S_{i}\right\|=3$ for each $i, 1 \leq i \leq n$, construct an election $(C, V \cup\{s\})$ with manipulator s and $5 n+3(m+1)$ candidates:
(1) "possible winners": c and w;
(2) "first losers": $a_{1}, a_{2}, \ldots, a_{n}$ and $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$;
(3) "w-bloc": $b_{0}, b_{1}, \ldots, b_{3 m}$;
(4) "second line": $d_{1}, d_{2}, \ldots, d_{n}$ and $\bar{d}_{1}, \bar{d}_{2}, \ldots, \bar{d}_{n}$;
(5) "garbage collectors": $g_{1}, g_{2}, \ldots, g_{n}$.

STV-CM is NP-complete: The Properties

Property 1: $a_{1}, a_{2}, \ldots, a_{n}$ and $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ are among the first $3 n$ candidates to be eliminated.

Property 2: Let $I=\left\{i \mid \bar{a}_{i}\right.$ is eliminated prior to $\left.a_{i}\right\}$. Then
c can be made win $(C, V \cup\{s\}) \Longleftrightarrow \quad l$ is a 3-cover.
Property 3: © For any $I \subseteq\{1,2, \ldots, n\}$, there is a preference for s such that
\bar{a}_{i} is eliminated prior to $a_{i} \quad \Longleftrightarrow \quad i \in I$.
(2) Such a preference for s is constructed as follows:

- If $i \in I$ then place a_{i} in the i th position of s.
- If $i \notin I$ then place \bar{a}_{i} in the i th position of s.

STV-CM is NP-complete: The Nonmanipulative Voters

(1)		$12 n$	votes:	c				
(2)		$12 n-1$	votes:	w	c	...		
(3)		$10 n+2 m$	votes:	b_{0}	w	c		
(4)	For each $i \in\{1,2, \ldots, 3 m\}$,	$12 n-2$	votes:	b_{i}	w	c		
(5)	For each $j \in\{1,2, \ldots, n\}$,	$12 n$	votes:	g_{i}	w	c		
(6)	$\begin{aligned} & \text { For each } j \in\{1,2, \ldots, n\}, \\ & \quad \text { and if } S_{j}=\left\{b_{x}, b_{y}, b_{z}\right\} \text { then } \end{aligned}$	$\begin{array}{r} 6 n+4 j-5 \\ 2 \\ 2 \\ 2 \\ \hline \end{array}$	votes: votes: votes: votes:	$\begin{gathered} d_{j} \\ d_{j} \\ d_{j} \\ d_{i} \end{gathered}$	$\begin{aligned} & \bar{d}_{j} \\ & b_{x} \\ & b_{y} \\ & b_{z} \end{aligned}$	$\begin{aligned} & w \\ & w \\ & w \\ & w \\ & w \end{aligned}$	c c c c	
(7)	For each $j \in\{1,2, \ldots, n\}$,	$\begin{array}{r} \hline 6 n+4 j-1 \\ 2 \\ \hline \end{array}$	votes: votes:	$\begin{aligned} & \bar{d}_{j} \\ & \frac{d_{i}}{} \\ & \hline \end{aligned}$	$\begin{aligned} & d_{j} \\ & b_{0} \\ & \hline \end{aligned}$	$\begin{aligned} & w \\ & w \\ & \hline \end{aligned}$	c	
(8)	For each $j \in\{1,2, \ldots, n\}$,	$\begin{array}{r} \hline 6 n+4 j-3 \\ 1 \\ 2 \\ \hline \end{array}$	votes: vote: votes:	a_{j} a_{j} a_{j}	$\begin{array}{r} g_{j} \\ d_{j} \\ \bar{a}_{j} \\ \hline \end{array}$	$\begin{aligned} & w \\ & g_{j} \\ & g_{i} \\ & \hline \end{aligned}$	c w w	$\begin{array}{r} c \\ c \\ \hline \end{array}$
(9)	For each $j \in\{1,2, \ldots, n\}$,	$\begin{array}{r} 6 n+4 j-3 \\ 1 \\ 2 \end{array}$	votes: vote: votes:	$\begin{aligned} & \bar{a}_{j} \\ & \overline{\mathrm{a}}_{j} \\ & \overline{\mathrm{a}}_{j} \end{aligned}$	$\begin{aligned} & \frac{g_{j}}{d_{j}} \\ & a_{j} \end{aligned}$	$\begin{aligned} & w \\ & g_{j} \\ & g_{i} \end{aligned}$	c w w	$\begin{aligned} & c \\ & c \end{aligned}$

STV-CM is NP-complete:
 Elimination Sequence Encodes a 3-Cover

Lemma (Bartholdi and Orlin (1991))
(1) Exactly one of d_{j} and \bar{d}_{j} will be among the first $3 n$ candidates to be eliminated.
(2) Candidate c will win if and only if

$$
J=\left\{j \mid d_{j} \text { is among the first } 3 n \text { candidates to be eliminated }\right\}
$$

is the index set of an exact 3-cover for \mathcal{S}.

Proof: See blackboard.

STV-CM is NP-complete: The Manipulor's Preference

Lemma (Bartholdi and Orlin (1991))
Let $I \subseteq\{1,2, \ldots, n\}$ and consider the strategic preference of manipulator s in which the ith candidate is $\bullet a_{i}$ if $i \in I$ and

- \bar{a}_{i} if $i \notin I$.

Then the order in which the first $3 n$ candidates are eliminated is:
(1) The $(3 i-2)$ nd candidate to be eliminated is

- \bar{a}_{i} if $i \in I$ and
- a_{i} if $i \notin I$.
(2) The $(3 i-1)$ st candidate to be eliminated is
- d_{i} if $i \in I$ and
- \bar{d}_{i} if $i \notin I$.
(3) The 3ith candidate to be eliminated is
- a_{i} if $i \in I$ and
- \bar{a}_{i} if $i \notin I$.

\{Scoring-Protocols without Plurality\}-CCWM

Theorem (Conitzer, Sandholm, and Lang (2007))
\{Scoring-Protocols without Plurality\}-CONSTRUCTIVE COALITIONAL Weighted Manipulation for three candidates is NP-complete.

Remark:

(1) For two candidates every scoring protocol is easy to manipulate.
(2) Plurality is easy to manipulate for any number of candidates.
(3) In particular, Veto-CCWM and Borda-CCWM for three candidates are NP-complete.
(4) The above theorem was independently proven by Hemaspaandra \& Hemaspaandra (2007) and Procaccia \& Rosenschein (2006).

\{Scoring-Protocols without Plurality\}-CCWM: Reduction from Partition

Proof: Membership in NP is clear.
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be a scoring protocol other than plurality.
To prove NP-hardness of α-CCWM, we reduce from the following NP-complete problem:

Name: Partition.
Given: A nonempty sequence $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of positive integers such that $\sum_{i=1}^{n} k_{i}$ is an even number.
Question: Does there exist a subset $A \subseteq\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in A} k_{i}=\sum_{i \in\{1,2, \ldots, n\}-A} k_{i} ?
$$

\{Scoring-Protocols without Plurality\}-CCWM: Reduction from Partition

Given an instance $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of PARTITION with $\sum_{i=1}^{n} k_{i}=2 K$ for some integer K, construct an election $(C, V \cup S)$ with $C=\{a, b, p\}$ and

$S:$ For each $i \in\{1,2, \ldots, n\}, \quad\left(\alpha_{1}+\alpha_{2}\right) k_{i}$
See blackbord for the proof of:
$\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in$ PARTITION $\Longleftrightarrow p$ can be made win $(C, V \cup S) . \square$

Copeland-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))
Copeland-Constructive Coalitional Weighted Manipulation for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Copeland-CCWM, we again reduce from Partition. Given an instance $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of PARTITION with $\sum_{i=1}^{n} k_{i}=2 K$ for some integer K, construct an election

$$
(C, V \cup S)
$$

with $C=\{a, b, c, p\}$ and the following votes in $V \cup S$.

Copeland-CCWM for four Candidates is Hard

	Vote Weight	Preference
v	$2 K+2$	$p \begin{array}{llll}\text { a } & b & \end{array}$
	$2 K+2$	$c \quad p \quad b \quad a$
	$K+1$	$\begin{array}{lllll}a & b & c & p\end{array}$
	$K+1$	$b a c p$

S : For each $i \in\{1,2, \ldots, n\}$, k_{i}

See blackbord for the proof of:
$\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in$ PARTITION $\quad \Longleftrightarrow \quad p$ can be made win $(C, V \cup S)$. \square

Maximin-CCWM for four Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))
Maximin-Constructive Coalitional Weighted Manipulation for four candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of Maximin-CCWM, we again reduce from Partition.
Given an instance $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of PARTITION with $\sum_{i=1}^{n} k_{i}=2 K$ for some integer K, construct an election

$$
(C, V \cup S)
$$

with $C=\{a, b, c, p\}$ and the following votes in $V \cup S$.

Maximin-CCWM for four Candidates is Hard

	Vote Weight	Preference
v :	7K-1	$a c c c c$
	7K-1	b c a p
	$4 K-1$	$c a b p$
	$5 K$	$p \quad c a b$

$S:$ For each $i \in\{1,2, \ldots, n\}, \quad 2 k_{i}$
See blackbord for the proof of:
$\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in$ PARTITION $\Longleftrightarrow p$ can be made win $(C, V \cup S) . \square$

STV-CCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))
STV-Constructive Coalitional Weighted Manipulation for three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of STV-CCWM, we again reduce from Partition.
Given an instance $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of Partition with $\sum_{i=1}^{n} k_{i}=2 K$ for some integer K, construct an election

$$
(C, V \cup S)
$$

with $C=\{a, b, p\}$ and the following votes in $V \cup S$.

STV-CCWM for three Candidates is Hard

	Vote Weight	Preference		
v	6K-1	b	p	a
	4K	a	b	
	$4 K$	p	a	b

S : For each $i \in\{1,2, \ldots, n\}$,
$2 k_{i}$
See blackbord for the proof of:
$\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in$ PARTITION $\quad \Longleftrightarrow \quad p$ can be made win $(C, V \cup S) . \square$

Destructive Manipulation

Definition (Destructive Coalitional Weighted Manipulation)
Let \mathcal{E} be some voting system.
Name: \mathcal{E}-Destructive Coalitional Weighted Manipulation (E-DCWM).

Given: A set C of candidates,

- a list V of nonmanipulative voters over C each having a nonnegative integer weight,
- a list of the weights of the manipulators in S (whose votes over C are still unspecified) with $V \cap S=\emptyset$, and
- a distinguished candidate $c \in C$.

Question: Can the preferences of the voters in S be set such that c is not a \mathcal{E}-winner of $(C, V \cup S)$?

Theorem (Conitzer, Sandholm, and Lang (2007))

Let \mathcal{E} be a voting system such that:

- Each candidate gets a numerical score based on the votes, and all candidates with the highest score win.
- The score function is monotonic: If changing a vote v satisfies
$\{b \mid v$ prefers a to b before the change $\}$
$\subseteq\{b \mid v$ prefers a to b after the change $\}$,
then a's score does not decrease.
- Winner determination in \mathcal{E} can be done in polynomial time.

Then \mathcal{E}-DCWM is in P .

Proof: See blackbord.

Corollary (Conitzer, Sandholm, and Lang (2007))
For any number of candidates, DCWM is in P for

- Borda,
- veto,
- Copeland, and
- maximin.

Remark: Since destructive manipulation can be harder than constructive manipulation by at most a factor of $m-1$ (where m is the number of candidates), DCWM is in P for

- plurality and
- regular cup
for any number of candidates.

STV-DCWM for three Candidates is Hard

Theorem (Conitzer, Sandholm, and Lang (2007))
STV-Destructive Coalitional Weighted Manipulation for three candidates is NP-complete.

Proof: Membership in NP is clear. To prove NP-hardness of STV-DCWM, we again reduce from Partition.
Given an instance $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of Partition with $\sum_{i=1}^{n} k_{i}=2 K$ for some integer K, construct an election

$$
(C, V \cup S)
$$

with $C=\{a, b, d\}$ and the following votes in $V \cup S$.

STV-DCWM for three Candidates is Hard

See blackbord for the proof of:
$\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in$ PARTITION $\Longleftrightarrow d$ can be made to not win $(C, V \cup S)$. \square

Overview: Results for CCWM

\# of Candidates	2	3	≥ 4
Plurality	P	P	P
Regular Cup	P	P	P
Copeland	P	P	NP-complete
Maximin	P	P	NP-complete
Veto	P	NP-complete	NP-complete
Borda	P	NP-complete	NP-complete
STV	P	NP-complete	NP-complete

Table: Results for Constructive Coalitional Weighted Manipulation

Overview: Results for DCWM

\# of Candidates	2	≥ 3
Plurality	P	P
Regular Cup	P	P
Copeland	P	P
Maximin	P	P
Veto	P	P
Borda	P	P
STV	P	NP-complete

Table: Results for Destructive Coalitional Weighted Manipulation

